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ABSTRACT

Physical variations in the manufacturing processes of electronic
devices have been widely leveraged to design Physically Unclonable
Functions (PUFs), which can be used for authentication and key
storage. Existing PUFs are static, as their PUF responses remain the
same regardless when the PUF is queried. Meanwhile, this paper
presents the new concept of Dynamic PUFs, where the responses
depend not only on the physical properties of the device but also on
the timing of the PUF queries. One application of Dynamic PUFs is
in dynamic software-hardware binding, where the control flow of
the software can be tied to both the timing of the software and the
physical properties of the hardware, in order to protect software
execution. This paper presents a realization of Dynamic PUFs us-
ing DRAM modules. The evaluation is based on the decay-based
DRAM PUFs, which can be realized today and were implemented
on commodity devices for testing.
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1 INTRODUCTION

The number of low-end embedded computing devices is continu-
ously growing, and this growth is expected to accelerate further
due to the interest in the Internet-of-Things (IoT). These low-end
devices are being deployed in a variety of settings from healthcare
to industrial environments, where the integrity and tamper resis-
tance of the software is critical. Meanwhile, hardware support in
the form of Physically Unclonable Functions (PUFs) can readily be
used in low-end devices [1] and can be used to protect software
from modification or from running on unauthorized devices [4].
PUFs extract unique and stable physical features emerging from
fabrication variations of the underlying hardware modules. All ex-
isting PUFs are static, meaning a PUF response for a given challenge
is stable and independent of the timing of the query.

This work proposes the new concept of Dynamic PUFs. A Dy-
namic PUF generates responses at device runtime, and the PUF
responses depend on both the challenges and the timing of the
PUF queries. Compared to the existing PUFs that give responses
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independently of the query times, Dynamic PUFs will give different
responses even if the same PUF is queried with the same challenge,
but at different times relative the most recent PUF reset. Dynamic
PUFs can be realized with PUFs in DRAM, which can be accessed at
system runtime and which have time-dependent responses [2, 12].

Dynamic PUFs can interact with software at runtime. With the
new Dynamic PUFs, we also propose dynamic software-hardware
binding, where the software can be designed to run only on autho-
rized devices and only with correct timing. If the timing is wrong,
the software will fail.

The contributions of this work are as follows:

e We introduce the concept of Dynamic PUFs, which have
time-dependent responses.

e We show an application of Dynamic PUFs: the dynamic
software-hardware binding.

e We develop a practical instance of a Dynamic PUF using a
decay-based Dynamic DRAM PUF on Intel Galileo Gen 2
platform. We also evaluate the characteristics of the decay-
based DRAM PUFs for their suitability as a Dynamic PUF.

2 DYNAMIC PUFS

PUFs extract unique and stable physical features from physical
objects [1]. Given a challenge (also called a PUF query), a PUF can
generate a response, which is a function of both the challenge and
the physical features of the PUF. This is known as a challenge-
response pair (CRP). Ideally, each physical object used as a PUF
will generate a unique PUF response for each challenge (i.e., the
uniqueness property of PUFs). Repeated queries with the same
challenge on the same PUF should give the same response (i.e., the
robustness property of PUFs), but in practice, they may vary a little
due to noise. All of the existing PUF designs do not consider the
timing of the PUF query in generating the response, and we call
these Static PUFs.

Meanwhile, this work presents the notion of a Dynamic PUF.
Different from the usual Static PUFs, Dynamic PUFs provide time-
dependent PUF responses, i.e., the responses depend not only on
the challenges but also on the timing of the PUF queries, relative
to the most recent PUF reset.

2.1 Operation of Dynamic PUFs

Besides the usual PUF query operation, a Dynamic PUF has an extra
operation called Dynamic PUF Reset, which resets the state of the
PUF. A Dynamic PUF Queryis akin to the PUF query for Static PUFs:
given a PUF challenge, a PUF response will be returned. However,
a Dynamic PUF will give different responses even if queried with
the same challenge, but at a different time since the most recent
Dynamic PUF Reset.
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2.2 Metrics for Dynamic PUFs

Ideal Dynamic PUF responses should have two features. First, re-
sponses at different times should be independent of each other, i.e.,
the response obtained at time Ty is independent of the response
at time T, when |Ty — Tx| > 60, where J; is the time resolution
of the Dynamic PUF. Second, the responses should be stable. The
following metrics can be used to evaluate a Dynamic PUF.

Time Resolution: Denoted by J;¢, time resolution indicates how
sensitive the PUF responses are to the query time (since the last
reset of the PUF). Each realization of a Dynamic PUF has a physical
limit of the time resolution.

Robustness and Uniquess: The intra distance is the distance
between PUF responses of the same challenge and query time on
the same PUF device. Here, distance is a measure of how different
two PUF responses are, and it can be measured typically by the
Hamming Distance or the Jaccard Index. The intra distance eval-
uates the robustness of the PUF. Ideally, the intra distance should
be small. The inter-challenge distance is the distance between PUF
responses from different PUF devices or the same PUF device but
different challenges. It evaluates the uniqueness of PUF responses
across different challenges and different PUF devices. Ideally, the
inter-challenge distance should be large. The inter-time distance is
the distance between PUF responses with the same challenge but
with the different query times on the same PUF device, where the
time difference between query times is greater than ;. It evaluates
the uniqueness of the PUF responses across different query times.

2.3 Helper Data System for Dynamic PUFs

Usually, the inter-time distance is not ideal, and the PUF responses
at different times are not independent. Thus, a Helper Data System
(HDS) is needed to amplify the entropy from the raw PUF response
and to extract the final PUF response corresponding to each query
time. This requires a different HDS entry for each query time Ty.
Also, noise exists in raw Dynamic PUF responses (the intra distance
is not ideal) and error correction needs to be performed as well.

To retrieve the PUF response at a specific query time, the Dy-
namic PUF Query should indicate which helper data to use, by
specifying an index to the entry in the HDS. To generate the HDS, a
trusted party needs to measure the desired PUF CRPs with different
query times in an enrollment phase.

3 DRAM PUFS AS DYNAMIC PUFS

DRAM, which is found in many commodity IoT and embedded
platforms, has been shown to exhibit PUF behavior. There are
three types of DRAM PUFs: decay-based DRAM PUFs [5-8, 10, 12],
latency-based DRAM PUFs [2], and startup-based DRAM PUFs [11].
Here, we show that decay-based DRAM PUFs can be used as Dy-
namic PUFs.

In Dynamic DRAM PUFs, the PUF challenge is the address range
of a DRAM PUF region from which the PUF will be extracted, and
an initial value written to the cells at Dynamic PUF reset.

3.1 Decay-based DRAM PUFs

The decay-based DRAM PUF leverages the fact that DRAM cells
lose data over time, which is also known as DRAM decay. Without
refresh, each DRAM cell can only retain the data for a certain time,
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Figure 1: The responses of a decay-based DRAM PUF depend on
the query time since the PUF reset at Tj.

called retention time. Decay-based DRAM PUF responses are based
on the variation of the retention times of the DRAM cells. A decay-
based DRAM PUF is composed of a set of cells within a DRAM
region. The retention time of each DRAM cell is believed to be
random and related to fabrication variations [10, 12]. As illustrated
in Figure 1, querying the decay-based DRAM at different times (e.g.,
at T; and T3) will result in different bit flips in the DRAM region,
which is the PUF response. We use the decay time to denote the
time between the Dynamic PUF Reset and the Dynamic PUF Query.
The time resolution ;¢ of the dynamic decay-based DRAM PUF
is on the order of seconds. Latency-based DRAM PUF [2] can be
an alternative implementation of Dynamic PUF, which has time
resolution ;¢ on the order of nanoseconds, but cannot be easily
realized in commodity devices today.

DRAM has the additional property that each access to a DRAM
cell (e.g., on a PUF query) implicitly refreshes all the DRAM cells in
that row, which resets the Dynamic PUF. When one wants to query
the PUF region several times after each reset, the PUF region should
be subdivided into sub-regions. Each sub-region consists of a set
of DRAM rows, and these DRAM rows do not have to be adjacent
to each other. Upon a Dynamic PUF Reset request, all DRAM PUF
sub-regions have their initial values set and refresh is disabled. To
query the Dynamic PUF, an index to the HDS entry is provided
as part of the Dynamic PUF Query. The index will also determine
which sub-regions should be used for that query. On a query, only
that sub-region will be accessed (and implicitly refreshed) while
other sub-regions continue to decay.

3.2 Accessing the Decay-based Dynamic DRAM
PUF at System Runtime

A decay-based Dynamic DRAM PUF can be implemented on a
commercial, off-the-shelf device by selectively refreshing DRAM as
shown in Figure 1, following [12]. First, on a Dynamic PUF Reset
(Tp), the DRAM PUF region is reserved, so that neither OS nor
applications use it, its cells are initialized with the initial value
(e.g., all zeros), and the refresh of the DRAM module is disabled. To
allow the OS and other applications use DRAM without decay, a
customized kernel module can selectively access and thus refresh
the DRAM rows 1, as in [12]. Upon a PUF query, the content of the
DRAM PUEF region is read as the raw PUF response.

I The refresh can be controlled by the kernel module and done at the same rate as in
the DRAM standard, but this may use up significant CPU resources. If the system and
application memory is refreshed at a reduced rate to save CPU resources, the system
will be more vulnerable to Rowhammer attacks [3].
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Figure 2: Example code layout of software-hardware binding for a)
straight-line code in a loop and b) repeated function calls. Parts c-d)
show the control flow of each protection example of a-b).

4 APPLICATIONS OF DYNAMIC PUFS

Software-hardware binding ties the software execution to a hard-
ware token [4]. With software-hardware binding, the software can
only be executed on authorized devices, and thus, it prevents ille-
gal software distribution. In the context of software obfuscation,
software-hardware binding has been used to strengthen the ob-
fuscation [9]. When software-hardware binding is used, analyzing
the binary will not reveal all the information of the software (e.g.,
targets of indirect jumps), and the attacker will not be able to re-
verse engineer the software completely. With a Dynamic PUF, this
obfuscation can be even stronger, because an attacker needs to
obtain all Dynamic PUF responses at different query times in order
to reverse engineer the software.

One of the software-hardware binding approaches is to change
all function calls to indirect jumps. Now, we show how to bind all
such jumps to the Dynamic PUF responses. This can be achieved by
inserting code to make a PUF query and replacing the indirect jump
destination address with an exclusive-OR result of the Dynamic
PUF response and a reference value. Below, we give examples of
software-hardware binding with different software structures.

Straight-Line Code: As shown in Figure 2 (a,c), at the beginning
of the program, the Dynamic PUF will be reset. The Dynamic PUF
is queried in each segment. The PUF response then depends on the
execution time elapsed between the last PUF reset (at the beginning
of the program) and the PUF query time. The destination address of
the function call at Use Response 1 depends on the PUF response,
and the program will continue the execute to segment 2.

Programs with Repeated Function Calls: In this scenario,
some code will be executed more than once, but in a determin-
istic way, as in Figure 2 (b, d). This could happen when a function
is called several times repeatedly, e.g., func A is called twice from
the main function. However, since a Dynamic PUF is used, the
PUF will return different responses each time the PUF query code

in the function is executed (assuming the time between the two
PUF queries are larger than J;¢), and the PUF queries need to use
different idx to the HDS entries at different times.

To make sure the functions will execute as designed if the PUF
is queried several times, several idx are needed for PUF queries at
different times and several reference values are needed when using
the PUF responses. To achieve this, a global counter g_counter is
inserted for each function to point to the correct idx and reference
value to be used at runtime. Every time a function is called, the
global counter will be increased by one. The PUF query code and
response code will fetch the corresponding idx and reference value
based on the value of the global counter and continue the correct
execution only with a correct PUF value. For example, in Figure 2 (b),
the Use Response A has two reference values, one for each call.

Programs with Loops: Within a loop, the PUF query will be
executed several times. The same method as in repeated function
calls can be applied if the number of loop iterations is fixed. Another
solution is to reset the Dynamic PUF at the beginning of each loop,
as shown with the loop in Figure 2 (a, c). Every time the code block
in the loop is executed, the PUF response will be the same (relative
to when the PUF was reset). Thus, no reference counter value in
the code is needed.

5 EVALUATION

5.1 Dynamic PUF Characteristics

We evaluate the decay-based Dynamic DRAM PUF that can be
deployed on commodity hardware today, in particular on Intel
Galileo Gen 2 platforms with two 128 MiB DDR3. A heater and
thermocouple are used with a control system to stabilize DRAM
temperature at 40°C. We evaluated 8 MiB DRAM regions for PUF
with decay times 7% ranging from 15s to 40s. To evaluate the time
resolution d;(, we denote §; as the smallest time difference between
different query times, and evaluated different &;.

Figure 3 shows the distribution of the intra, inter-challenge, and
inter-time distance as discussed in Section 2.2. Here, we use the Jac-
card index to measure the distance between different responses. The
bit flips in each response are treated as a set of indices. The Jaccard

index of the two sets (A and B) from two responses are calculated

by J(A, B) def Iﬁgg} . When the two responses are identical, J = 1.

When the two responses do not share any bit flips, J = 0. As shown
in Figure 3, the intra Jaccard index is very close to 1, indicating
that the PUF response is robust. The inter-challenge Jaccard index
from two devices is very close to zero, meaning the PUF responses
from different DRAM regions are very different. The inter-time
Jaccard indices for time differences §; = {5s, 2s, 1s} are also shown
in Figure 3. For all the three time differences, the inter-time Jac-
card indices are smaller than the intra Jaccard index, indicating the
responses from different decay times are different enough to be
distinguished. Thus, the time resolution is better than 1s. And a
bigger §; makes the responses between different decay times more
distinguishable.

We use the HDS proposed in [8]. For each Ty, one enrollment
measurement was taken at Ty — 26;, Tx — O¢, Tx + O and Ty + 26,
separately, and cells that flip in the time interval [Ty — 258, Ty —
Ot] and [Ty + 8¢, Ty + 26¢] are enrolled in the HDS for Ty. The
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cells that flip in [Ty — 28;, Tx — 6;] during enrollment should flip
in response at Ty and become logical 1, and the cells that flip in
[Tx + 6¢, Tx + 20;] during enrollment should not yet flip in the
response at T and become logical 0. Then, ten measurements are
taken at Ty to evaluate the bit error rate (BER) of the enrolled cells.
We evaluated total decay times 7 ={15s, 20s, 25s, 30s, 35s, 40s} and
time differences §;={2s, 1s, 500ms, 200ms}.

Figure 4 shows the average number of bit flips in the time interval
[Tx =284, Tx — &4 ] or [Ty + 8¢, Ty + 28, ] in the two boards measured.
Figure 4 shows that longer Ty or larger §; give more bits that can
be used. To generate the HDS for time Ty, 32 X 3 = 96 bit flips are
needed in time range [Ty — 26;, Ty — ;] and [Tx + 8¢, Tx + 26¢],
considering the case 32 bits are needed for each response and 3-
repetition code are used for error correction code (ECC). With 8 MiB
DRAM PUF size, when the total decay time is larger than 25s for
d; = 2s, it can provide more than 96 bits. To achieve a smaller
O, a larger DRAM size should be used. To compute the average
BER of the PUF reconstructions, with the generated HDS from
the enrollment, we divide the number of cells that do not flip to
their desired logical value by the total number of cells enrolled for
each Ty. Figure 5 shows the maximum BER in all reconstructions
for both evaluated devices. When the time difference §; is larger
than 500 ms, the BER is smaller than 25%, which can be corrected
by 3-repetition code. Figure 5 also shows that the minimum time
resolution of the dynamic decay-based DRAM PUF is about 500 ms.

5.2 Applications and Dynamic PUF Overhead

To test dynamic software-hardware binding, we bind the Dynamic
PUF response to a program which contains AES-128 encryption
and decryption, as well as a program which contains SHA-512. Both
programs contain repeated function calls and loops to show that
the scheme can support programs with non-trivial structures. HDS
is inserted into the program binary. For each PUF query, the HDS
requires 384 Bytes (4 Bytes for each pointer, and with 3-repetition
code, 3 x 32 cells are needed). The AES-128 application, for example,
contains 9 PUF queries, the HDS takes up 3.4 KiB, and the total
binary size is increased by 32.5%. The implementation is in software
and no hardware overhead is required.

6 CONCLUSION

This paper presented the new concept of Dynamic PUFs, as well as
their possible implementations and applications. Different from the
usual static PUFs, Dynamic PUFs have time-dependent responses.
With Dynamic PUFs, the software execution (timing) can affect the
PUF response dynamically, making dynamic software-hardware

Dynamic DRAM PUFs.

namic DRAM PUFs.

binding possible. Furthermore, the characteristics of decay-based
Dynamic DRAM PUF were evaluated on Intel Galileo Gen 2 boards.
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