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ABSTRACT
This paper focuses on a new attack vector in modern processors: the
timing-based side and covert channel attacks due to the Translation
Look-aside Buffers (TLBs). This paper first presents a novel three-
step modeling approach that is used to exhaustively enumerate all
possible TLB timing-based vulnerabilities. Building on the three-
step model, this paper then shows how to automatically generate
micro security benchmarks that test for the TLB vulnerabilities.
After showing the insecurity of standard TLBs, two new secure TLB
designs are presented: a Static-Partition (SP) TLB and a Random-Fill
(RF) TLB. The new secure TLBs are evaluated using the Rocket Core
implementation of the RISC-V processor architecture enhanced
with the two new designs. The three-step model and the security
benchmarks are used to analyze the security of the new designs in
simulation. Based on the analysis, the proposed secure TLBs can
defend not only against the previously publicized attacks but also
against other new timing-based attacks in TLBs found using the
new three-step model. The performance overhead is evaluated on
an FPGA-based setup, and, for example, shows that the RF TLB has
less than 10% overhead while defending all the attacks.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and coun-
termeasures; • Computer systems organization → Embedded
hardware; Reduced instruction set computing.
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1 INTRODUCTION
Research on timing-based attacks (and defenses) in processors has a
long history. To-date, researchers have focused mainly on the mem-
ory subsystem when showing the different timing-based attacks,
and have, for example, demonstrated a plethora of timing-based
channels in caches, e.g. [1–3, 10, 20]. All the attacks have shown the
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possibilities to extract sensitive information via the timing-based
channels, and often the focus is extracting cryptographic keys.

Originally, many timing-based attacks may not have gained
much attention as they were not considered practical. However,
the recent Spectre [14] and Meltdown [17] attacks have shown that
timing-based channels are more dangerous than previously thought.
The Spectre and Meltdown attacks consist of two parts: first, spec-
ulative execution is used to access sensitive information, second, a
timing-based channel is used to actually transfer the information to
the attacker. Whether by themselves, or in combination with spec-
ulative execution, the timing-based channels in microarchitecture
pose threats to system security, and should be mitigated.

Most mitigations of timing-based attacks in the memory subsys-
tem have focused on design of secure caches, e.g. [4, 6, 16, 18, 27–
29, 31–33]. Meanwhile, this work focuses on preventing timing-
based attacks due to TLBs, and presents the first hardware defenses
for TLBs.

Similar to caches, and all cache-like structures, timing varia-
tions due to hits and misses exist in TLBs and can be leveraged to
build practical timing-based attacks [8, 12]. For example, in [8], it is
shown that TLB timing channels can be used to extract the crypto-
graphic key from the RSA public-key algorithm with a 92% success
rate. Timing-based channels in TLBs are distinct in that they are
triggered by memory translation requests, not by direct accesses to
data. They also have a different granularity (pages vs. cache lines
for data or instruction caches), and, in commercial processors, TLBs
have more complicated logic, compared to caches, due to support
for various memory page sizes. Further, defending cache attacks
does not protect against TLB attacks [8]. Moreover, there has not
been a systematic security analysis of the TLB vulnerabilities, nor
concrete proposals for secure TLB design. This paper provides both.

This work starts by providing a novel three-step modeling ap-
proach to exhaustively enumerate all possible TLB timing-based
vulnerabilities. Similar to the recent work on modeling cache at-
tacks [5], this work develops a novel model of the attacker and the
victim behavior in relation to the TLB states. Rather than modeling
software attacks, the three-step approach analyzes possible victim
or attacker behaviors that affect the TLB state. All possible com-
binations of the attacker and victim behaviors are evaluated, and
systematically reduced to only three-step behaviors that can result
in timing-based attacks. In total, 24 possible vulnerabilities were
found, of which only 8 map to existing attacks [8, 12]. We believe
that the other 16 are new attack types not previously considered.

Based on the three-step model, micro security benchmarks are
then semi-automatically generated. Specifically, each vulnerability
type in the three-step modeling approach is translated into con-
crete sets of assembly instructions which can be executed on the
processor simulator to test the TLB.

Armed with the three-step model and the security benchmarks,
the security of different typical configurations of TLBs are tested
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using Rocket Core implementation of the RISC-V processor archi-
tecture. Standard TLBs, i.e. Fully-Associative (FA) or Set-Associative
(SA) TLBs, which include process IDs, e.g. ASID in RISC-V archi-
tecture, are shown to be vulnerable to many of the attacks. Conse-
quently, this work presents new defenses. Especially, we present
two new secure TLB designs in hardware: a Static-Partition (SP)
TLB and a Random-Fill (RF) TLB, latter of which is more complex
but can defend all of the attacks. These are the first hardware de-
fenses to TLB attacks.

Our security evaluation shows that the standard SA TLBs are
able to defend 10 types of external hit-based attacks (labeled EH in
Table 2) and attacks requiring obtaining a TLB hit between different
processes (i.e. process IDs). The SP TLB is able to further prevent 4
more external miss-based vulnerabilities (labeled EM in Table 2).
In total it can defend 14 out of the 24 vulnerabilities. Meanwhile,
the RF TLB is able to prevent all of the 24 possible timing-based
vulnerabilities in TLBs.

To help understand the impact of the new secure TLBs on the sys-
tem performance, a RISC-V Rocket Core based processor with the
new secure TLBs are synthesized on the Zynq ZC706 and ZedBoard
FPGAs. This allows for running security software alongside SPEC
2006 benchmarks and a full Linux system. Based on our evaluation,
for example, the SP TLB has 3x misses per kilo-instructions (MPKI)
compared to the standard SA TLB, while the RF TLB has 9% more
MPKI than the standard TLB. For the RF TLB, the hardware cost of
the defenses is about 8% more logic.

1.1 Contributions
This work’s contributions are:

• Present the first three-step modeling approach that can be
used to reason about all hit-based and miss-based timing-
based attacks on TLBs.
• Develop a semi-automated method to generate micro secu-
rity benchmarks for each vulnerability from the TLB three-
step model.
• Design the first hardware defense for TLB attacks: the new
SP TLB and the new RF TLB, and realize them in a Rocket
Core implementation of a RISC-V processor.
• Evaluate the security of the standard and secure TLBs us-
ing the micro security benchmarks running on RISC-V sim-
ulation, and show that the results match with theoretical
channel capacity calculation.
• Test performance by synthesizing the hardware on FPGAs,
and running RSA decryption tests alongside SPEC 2006
benchmarks under Linux on the FPGAs.

The Chisel code for the Rocket Core and the secure TLB designs
will be released under open-source license and will be available at
http://caslab.csl.yale.edu/code/securetlbs/.

2 RELATEDWORK
This section reviews existing work on caches (most closely related
to TLBs) and the few existing works on TLBs. Dedicated surveys
of microarchitectural timing-based attacks and defenses, e.g., [23],
cover details of other types of attacks and defenses.

2.1 Timing-Based Attacks and Caches
In modern processor caches there are timing differences between
cache hits (fast) and cache misses (slow), and these variations in
timing have been exploited to leak sensitive information. Especially,
a large number of different cache timing-based side-channel and
covert-channel attacks have been presented in literature, e.g. [1–
3, 10, 20]. And, there aremany secure hardware cache designswhich
aim to prevent these different attacks, e.g. [4, 6, 16, 18, 27–29, 31–33].
However, even if the cache-based attacks are mitigated, TLB-based
attacks are the next attack vector that malicious attackers might
use – and hence are the focus of this work.

2.2 Timing-Based Channels in TLBs
Compared with caches, there are only two published TLB-based tim-
ing attacks 1 2. TLBleed attack [8] uses timing-based channels com-
bined with machine learning to create attack which is able to leak
bits of secret keys from the RSA algorithm (they also show attack
for the EdDSA algorithm). They leverage the Prime + Probe [19]
attack strategy previously applied in processor caches.

Prior to TLBleed, the Double Page Fault attack [12] leverages the
Cache Collision [3] attack strategy previously applied in processor
caches. It requires the victim to access some kernel memory pages
twice, and uses the fact that an access to a previously allocated
kernel virtual pages will bring in TLB entries, even if page fault is
generated and accesses permission checks failed. The timing of the
second access thus reveals information on whether a inherent TLB
hit happened.

Beyond these individual attacks, there are neither exhaustive
categorizations nor models of possible TLB timing-based attacks –
as are proposed in this work.

2.3 Existing Approaches to Securing TLBs
Currently, we are only aware of five approaches (mostly software-
based) that can help mitigate some TLB attacks, but are not as
effective as our hardware secure TLBs.

First, today’s Linux system makes use of virtual addresses and
process identifiers, e.g. ASID on RISC-V, to identify different pro-
cesses in the SA TLBs. When the attacker and the victim are sep-
arate processes that are assigned different process identifiers in
hardware, external hit-based vulnerabilities (labeled as EH vulner-
ability macro types in Table 2) are not possible. This can defend 10
of the 24 attack types in our categorization.

Second, in the Sanctum [4] secure processor design, the per-core
SA TLBs are flushed by a security monitor software whenever a core
switches between enclave and non-enclave code. This defense adds
protection for 4 more external miss-based attacks (labeled as EM

1The Leaky Cauldron [26] attack is also related to TLB and targets Intel SGX. However,
it does not depend on hits and misses in the TLB, but instead it relies on the assumption
that the attacker can evict the enclave entries in the TLB, so an enclave’s memory
access will trigger a page table walk, and the malicious OS can get the page access
pattern trace.
2The Malicious Management Unit [24] attack makes use of the Memory Management
Unit (MMU) to build eviction set of virtual addresses to allow the page table entries
to map to certain cache sets in the CPU caches (especially in the Last-Level Cache).
In this case, eviction sets which can bypass the software-based defenses are formed
and can trigger cache timing-based attacks in LLC. However, similar to the Leaky
Cauldron [26] attack, this attack also does not depend on hits and misses in the TLB.

http://caslab.csl.yale.edu/code/securetlbs/
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vulnerability macro types in Table 2) over SA TLB without flushing
by a security monitor, for a total prevention of 14 out of 24 attacks.

Third, Intel SGX also flushes SA TLBs during switching between
enclave and non-enclave code [13]. The flushing in Intel is presum-
ably done in hardware, as opposed to software in Sanctum. It can
also defend the 14 attacks, same as Sanctum.

Fourth, the InvisiSpec [30] work proposes to prevent observable
changes to D-TLBs during speculation, by delaying any TLB updates
and page table walks until the speculative loads reach point of
visibility. It focuses on speculative channels, but cannot defend
against conventional ones.

Fifth, some processors employ FA TLBs, which by design do
not have different TLB sets (there is only one set). Miss-based
vulnerabilities (labeled as ∗M vulnerability macro types in Table 2)
do not apply to FA TLBs. Such TLBs can defend 18 of the attacks.

There are also software techniques that can help mitigate some
TLB timing-based attacks. For example, the global bit, in x86 pro-
cessors, will prevent pages from being flushed. However, there
are other ways to invalidate a page, e.g. using TLB coherence, to
make invalidation related attacks possible. Using large pages for
the crypto libraries can also be one possible software defense to
TLB timing-based attacks.

Unlike all the existing work, this work presents two new hard-
ware secure TLB designs, including the RF TLB which can prevent
all types of timing-based attacks according to the three-step model,
and has about same performance as a SA TLB.

3 MODELING TLB TIMING-BASED
VULNERABILITIES

To analyze all the possible timing-based TLB attacks, this section
presents a three-step modeling approach which can be used to
reason about the behavior of the TLB logic and to derive all the
possible timing-based vulnerabilities.

3.1 Threat Model and Assumptions
A TLB timing-based attack involves an attacker and a victim. In
many cases they are executing on the same processor core, a set
of cores, or a set of hyper-threads which share same physical TLB,
but this is not required for all types of the attacks. In this paper, we
use A and V to denote the attacker and the victim with different
process IDs. For the attacks where the attacker and the victim are
in the same address space, attacker is able to trigger some known
address memory operation as if it were the victim, e.g. states Va
and Vaalias in Table 1 can be actually attackers.

We assume, in hardware, all memory operations are identified by
the virtual memory address,vaddr (including null address in case of
certain TLB flush related operations) and the process ID (including
null process ID in case of certain TLB flush related operations), e.g.,
ASID in RISC-V.

The victim is assumed to have some security critical memory
range, x , within which the access pattern depends on the secret the
attacker wants to learn. An example of a security critical region
is the set of page entries accessed during execution of the RSA
functions of libgcrypt, where the value of the key bit (either 0 or 1)
determines which specific memory pages are accessed. The timing
of the accesses to the security critical memory range is affected by

the timing of TLB related operations, and it can reveal information
such as cryptographic keys.

The attacker is assumed to know the victim software, e.g. what
implementation of a cryptographic algorithm it uses, but not the
secret cryptographic keys. He or she is assumed to know the size,
ssize , and the location, sbase (in virtual memory) of the security
critical memory range x . And, the attacker is assumed to know the
TLB state machine logic; although during run-time of the processor
the attacker cannot access the internal state of the hardware TLB –
he or she can only observe the timing of the memory operations
and try to deduce the state of the TLB from the timing.

The attacker can measure the timing of its own memory oper-
ations or operations of the victim; but cannot access the actual
sensitive data being processed by the victim. In most cases, the
attacker can also force the victim to execute specific operations, e.g.
force the victim to perform decryption while the attacker measures
timing. Thus, even if some operation is done by the victim, it is
under control of the attacker so attacker can measure the timing.
The timing can be identified by the attacker as f ast or slow .

The timing attacks can be both side-channel attacks and covert-
channel attacks. The difference between the two is that the victim
in the side-channel scenario is the sender in the covert-channel
scenario. Regardless of the channel type, we use V for victim (or
sender) and A for attacker (or receiver).

Our threat model assumes that high-level OS page table related
channels are already mitigated. E.g. TLB miss can take variable
amount of time depending on whether there already exists a page
table translation, or whether the OS has to create a new translation
entry during a page fault. We focus on address translation data of
the TLB structure. We do not consider possible TLB timing channels
that are due to port contention, LRU replacement, or any directory
structures. We also do not consider Page Walk Cache [9, 25] effect
on storing intermediate translations of memory pages3.

3.2 Introduction of the Three-Step Model
One observation we make is that all existing TLB timing-based
attacks take three steps. In Step 1, a memory operation is performed,
placing the TLB block (also called TLB slot or TLB entry) in a known
initial state (e.g. a new translation is put into the block or block
is invalidated). Then, in Step 2, a second memory operation alters
the state of the TLB block from the initial state. Finally, in Step 3, a
final memory operation is performed, and the timing of the final
operation reveals some information about the relationship among
the addresses from Step 1, Step 2 and Step 3. Attacks with more
than three steps can be reduced to a three-step attack, as shown in
Appendix A.

We write the three steps as: Step 1 ⇝ Step 2 ⇝ Step 3 which
indicates a sequence of steps taken by the attacker or the victim.
Table 1 lists all the 10 possible states of the TLB block for each step
of our three-step model.

Each step in the model represents a state of a TLB block, since all
the TLB blocks are updated following the same TLB state machine
logic, it is sufficient to consider only a TLB block as it is the smallest
unit of the TLB. Different implementations of TLBs involve different
mapping functions for the TLB blocks. However, this does not affect

3So far Page Walk Cache does not exist in RISC-V architecture.
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Table 1: The 10 possible states for a single TLB block in our three-
step vulnerability modeling procedure.

States Description

Vu

The TLB block contains translation for a memory address u ,
translation which is placed in the TLB block due to a memory
access by the victim. Attacker does not know u , but u is from
a range x of memory locations, range which is known to the
attacker. The address u may have same page index as Aa or
Va and thus conflict with them in the TLB block. The goal of
the attacker is to learn the page address or index of Vu .

Aa
or
Va

The TLB block contains translation for a memory address a.
The translation is placed in the TLB block due to a memory
access by the attacker, Aa , or the victim, Va . The attacker
knows the address a, independent of whether the access was
by the victim or the attacker themselves. The address a is
from within the range of sensitive locations x . The address a
may or may not be the same as the address u .

Aaalias
or

Vaalias

The TLB block contains translation for a memory address
aalias . The translation is placed in the TLB block due to
a memory access by the attacker, Aaalias , or the victim,
Vaalias . The address a

alias is within the range x . It is not
the same as a, but it has same page index and can map to the
same TLB block, i.e. it “aliases” to the same block.

Ainv
or

Vinv

The TLB block previously containing translation for a mem-
ory address is now invalid. The translation is “removed” from
the TLB block by the attacker Ainv or the victim Vinv as
the result of TLB block being invalidated, e.g. due to synchro-
nization updates to in-memory memory-management data
structures or due to context switch between processes which
causes OS to flush per-core TLB entries.

Ad
or
Vd

The TLB block contains translation for a memory address d .
The translation is placed in the TLB block due to a memory
access by the attacker, Ad , or the victim, Vd . The address d
is not within the range x .

⋆
Any data, or no data, can be in the TLB block. The attacker
has no knowledge of page address in this TLB block.

themodel, as the steps target on only one single TLB block. Different
TLBs may make it more difficult in practice for attacker and victim
to access the same block, but once they can achieve that – qualifying
the practical difficulty of achieving certain steps is not part of the
model, the model shows if there is a possibility of an attack or not,
independent of the practical difficulty.

3.3 Derivation of All TLB Vulnerabilities
Based on the states possible in each step there are in total 10 ∗
10 ∗ 10 = 1000 combinations of possible three-steps. We developed
an algorithm that can process the list of all the three-steps, and
eliminates ones which cannot lead to an attack. A three-step com-
bination cannot become a vulnerability if it satisfies one of the
below rules:

(1) A ⋆ is not possible in Step 2 or Step 3, having ⋆ in the step
means the TLB is in an unknown state and this removes
useful information for the attacker.

(2) A Vu must be in one of the steps. If there is no unknown u
in the steps, there is nothing for the attacker to learn.

Table 2: The table shows all the timing-based TLB vulnerabilities.
Attack Strategy column gives our common name for each set of one
ormore specific vulnerabilities that would be exploited in an attack
in a similar manner (many of the names are borrowed from cache
timing-based attacks in literature).Vulnerability Type column gives
the three steps that define each vulnerability. For Step 3, fast indi-
cates a TLB hit must be observed, while slow indicates a TLB miss
must be observed. Macro Type column proposes the categorization
the vulnerability belongs to. “E” is for external interference vulner-
abilities. “I” is for internal interference vulnerabilities. “M” is for
miss-based vulnerabilities. “H” is for hit-based vulnerabilities. At-
tack column shows if a type of vulnerability has been previously
presented in literature.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3

TLB
Internal
Collision

Ainv Vu Va (fast) IH (1)
Vinv Vu Va (fast) IH (1)
Ad Vu Va (fast) IH (1)
Vd Vu Va (fast) IH (1)

Aaalias Vu Va (fast) IH (1)
Vaalias Vu Va (fast) IH (1)

TLB Flush
+ Reload

Ainv Vu Aa (fast) EH new
Vinv Vu Aa (fast) EH new
Ad Vu Aa (fast) EH new
Vd Vu Aa (fast) EH new

Aaalias Vu Aa (fast) EH new
Vaalias Vu Aa (fast) EH new

TLB Evict
+ Time

Vu Ad Vu (slow) EM new
Vu Aa Vu (slow) EM new

TLB Prime
+ Probe

Ad Vu Ad (slow) EM (2)
Aa Vu Aa (slow) EM (2)

TLB
version of
Bernstein’s
Attack

Vu Va Vu (slow) IM new
Vu Vd Vu (slow) IM new
Vd Vu Vd (slow) IM new
Va Vu Va (slow) IM new

TLB Evict
+ Probe

Vd Vu Ad (slow) EM new
Va Vu Aa (slow) EM new

TLB Prime
+ Time

Ad Vu Vd (slow) IM new
Aa Vu Va (slow) IM new

(1) Double Page Fault attack [12].
(2) TLBleed attack [8].

(3) A ⋆ in one step, followed by Vu in next step cannot lead to
an attack, since the TLB block needs to be in some known
state before Vu is placed into it.

(4) Three-step patterns with two adjacent steps repeating, or
both known to the attacker, can be eliminated4.

(5) Steps involving a known address a and an alias to that ad-
dress aalias , give same information, thus three step combi-
nations which only differ in use of a or aalias cannot rep-
resent different attacks, and only one combination needs to
be considered, e.g., Vu ⇝ Aaalias ⇝ Vu is a repeat type of
Vu ⇝ Aa ⇝ Vu , and one of the two can be eliminated.

4Some of the possible attacks involve only two steps, but these attacks are represented
by three-step model where first step is an explicit ⋆, i.e., they are represented by
patterns ⋆⇝ · · · .
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Figure 1: SP TLB access handling procedure flow chart.

(6) An inv related state cannot be in Step 2 or Step 3 because it
is so far not possible for most ISAs to allow flushing of the
TLB from user space. (See more discussion in Appendix B).

(7) If measured timing corresponds to more than one possible
sensitive address translation of the victim, the corresponding
vulnerability is removed. E.g., ⋆ ⇝ Aa ⇝ Vu is removed
because when observing a fast timing, u can possibly map
to a, or first step’s potential u that is included in ⋆.

After applying the script which implements our simplification
algorithm, 34 three-step access patterns remain as candidates for
possible timing-based TLB attacks. These 34 access patterns are
further manually reduced to a list of 24 types of timing-based TLB
vulnerabilities, listed in Table 2. Due to space limitation, details on
why the 10 patterns cannot form vulnerabilities are not included in
the paper.

To summarize all the vulnerability types, Table 2 shows the list
of all the 24 vulnerability types, along with a more coarse-grained
attack strategies, which cover one or more vulnerability types.
The list of vulnerability types can be further collected into four
simple macro types: internal interference miss-based (IM), internal
interference hit-based (IH), external interference miss-based (EM),
external interference hit-based (EH).

All types of vulnerabilities only involving the victim, V , in the
states in Step 2 and Step 3 are called internal interference vulnera-
bilities (I). The remaining ones are called external interference (E).
Some vulnerabilities allow attacker to learn that the page address
of the victim maps to the TLB set of the attacker by observing slow
timing due to a TLB miss. we call these miss-based vulnerabilities
(M). The remaining ones leverage observation of f ast timing due
to a TLB hit, and are called hit-based vulnerabilities (H).

Most of the vulnerability types have not been explored before, ex-
cept for two groups. The Double Page Fault attack [12] is effectively
based on the Internal Collision, and it maps to types labeled (1) in
the Attack column in Table 2. The TLBleed attack [8] is effectively
based on the Prime+Probe strategy, and it maps to types labeled
(2) in the Attack column in Table 2. All other vulnerability types
correspond to new attacks not previously discussed.

4 SECURE TLB DESIGNS
In order to prevent timing-based vulnerabilities, we designed two
secure TLBs, the SP TLB and the RF TLB. Designs of the secure
TLBs follow the threat model discussed in Section 3.1. We focus on

  

(1) Request from CPU

Processor

DCache

                                                                 

                 TLB  

(2) Choose the 
     partition to fill
     victim or attacker

Page Table Walker

(3) Response
      to CPU

ID ID ID ID ID ID ID ID

ID ID ID ID ID ID ID ID

... ...

ID1 ID1 ID2 ID2

ID1 ID1 ID2 ID2

Figure 2: Sample block diagram of SP TLB with victim (ID1) and
attacker (ID2) part being allocated 50% of TLB space.

L1 D-TLB in this work, but it can be applied to instruction TLBs as
well as other levels of TLB.

4.1 Static-Partition (SP) TLB
SP TLB is a SA TLB where certain ways are assigned to a victim
process and other ways are assigned to all remaining processes,
which by default are assumed to be potential attacker processes.
The process ID, e.g. ASID in RISC-V, is used to differentiate the
victim and the attacker. The number of ways assigned to each is
set at design time, but could be further extended to be dynamic at
run time.

4.1.1 SP TLB Access Handling Procedure. SP TLB isolates the ac-
cesses between the victim and the attacker. TLB hits are identical to
SA TLB, where both address and process ID must match. For TLB
misses, the victim’s address translations cannot cause replacement
in the attacker’s partition, and the attacker’s address translations
cannot cause replacement in the victim’s partition. Each partition
maintains its own LRU policy, which can prevent some LRU attacks,
but defense of LRU related attacks is not focus of this work as dis-
cussed in the threat model. The SP TLB access handling procedure
is shown in Figure 1.

4.1.2 SP TLB Logic. The SP TLB (Figure 2) partitions the victim and
the attacker by cache ways. The allocation of different partitions is
configurable during the design time. Assuming there areM ways
in total. The victim partition will take N (0 < N < M ) ways while
the attacker partition will take the remainingM − N ways. In our
implementation, the victim and the attacker part are allocated 50%
of TLB ways by default. Process ID field of each entry in the TLB is
reused by the SP TLB to determine whether a partition is victim’s
or attacker’s.

SP TLB requires minimal changes to the TLB logic, and protects
14 out of the 24 vulnerabilities shown in Section 5.

4.2 Random-Fill (RF) TLB
To protect all the vulnerabilities, we propose Random-Fill TLB,
which is able to de-correlate the requested memory access from
actual TLB entries that are brought into the TLB, making the at-
tacker’s observations non-deterministic. For TLB hits, the behavior
is the same as the SA TLB. For TLB misses, depending on the mem-
ory address region, a random address translation will be fetched
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Figure 3: RF TLB access handling procedure flow chart.

into the TLB ("random fill"), while the originally requested address
is directly sent back to the CPU without filling the TLB ("no fill").
The RF TLB also introduces the Sec bit which is used to identify
certain memory translation entries are belonging to secure data.

4.2.1 RF TLB Access Handling Procedure. RF TLB access handling
procedure is shown in Figure 3. D denotes the requested address
translation.D ′ is a random address translation to be filled in the TLB
(D and D ′ are possibly the same because of the randomization). R is
the TLB entry that would be evicted by D, in TLB set S , according
to the LRU replacement policy. R′ is the TLB entry evicted by D ′.
SecR and SecD is the Sec bit of R and D, respectively, indicating
whether the page address is in the secure region.

If D maps to an existing entry in the TLB (page address and
process ID matches), a normal TLB hit handling procedure will
occur. Otherwise:
• If SecR is 0 and SecD is 0, normal TLB miss occurs.
• If SecR is 1 and SecD is 0, then D ′ is chosen as a random
virtual non-secure page address, within the same sets of TLB
entries as the secure region, and filled in TLB, evicting R′.
Meanwhile, R will not be evicted and results of D request
will be sent to the processor directly. Thus an attacker can-
not deterministically evict the secure address chosen by the
replacement policy.
• If SecD is 1, then D ′ is chosen as a random virtual address
within the secure region, and filled in TLB, evicting R′. Re-
sults of D request will be sent to the processor directly. Thus,
an attacker cannot observe TLB state changes due to secure
page address D, but he or she instead observers TLB state
changes due to random page address D ′.

RF TLB uses the randomization approach to randomly bring in
data from specified memory ranges to confuse the attacker. It does
not randomize all of the TLB accesses so as to limit the performance
impact. The RF TLB is able to prevent all types of timing-based
vulnerabilities shown in Table 2, which are discussed in Section 5.

4.2.2 RF TLB Logic. RF TLB block diagram is shown in Figure 4b.
All the bold lines and blocks are the added hardware and logic
extension. In the TLB array, an extra field (a secure bit Sec , either
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Figure 4: (a) Random Fill Engine, (b) RF TLB block diagram.

0 or 1) is added to each of the TLB entries to indicate whether it
contains an address translationwithin the secure region. In addition,
the existing process ID field (e.g., ASID in RISC-V) in each TLB
entry is used to differentiate the victim and the attacker process.
By default, we set specific process ID 1 for the victim program and
all other ASIDs to be attackers.

An extra set of registers is added to store the process ID of the
victim process and the start address, sbase , and the size, ssize of
the secure region (the base and size are defined in terms of pages,
usually 4KiB). The registers can be managed by a trusted OS to
change the victim process ID and secure regions when different
victim programs need protection.

An extra buffer is added which stores equivalent of one TLB
entry. It is used as temporary storage for translation data that is
returned to the CPU, but which should not be placed in the TLB. It
will be cleaned up after the address is returned.

The Random Fill Engine (RFE), shown in Figure 4a is used to
generate addresses which should be used for TLB updates5. In
Figure 4b, (1-2), the “no fill” fill_type will first be sent to TLB. On a
TLB miss, the TLB will probe the page address without filling TLB
entries to see if the chosen entry has a valid secure page address
translation. Then, (3) the SecR bit is set and sent back. Next, (4) if it
is a request to the secure region or the SecR bit is one, a random
fill request will be triggered. If the original request is in the secure
region, a random virtual page address is derived from RFE within
the secure region [sbase , sbase + ssize], and a translation will be
put into the TLB entry. If the original request comes from the non-
secure region, most of the higher bits of the requested address
are remain the same while the bits that correspond to the TLB set
index6 will be randomized to make the eviction indeterministic.
Next, (5) the Random Fill Logicwill modify the response and prevent
the random fill result from being sent to the processor. Then, (6)
5We assume the OS has pre-generated page table entries that may correspond to the
random virtual address generated by the RFE, which may not be actually used by the
original program, to prevent OS or software-based timing attacks due to page faults
when a page entry for a random address is looked up by the TLB.
6The TLB set index to be randomized has bit size Sn = loд2[min (ssize, nsets )],
where nsets is the number of sets in TLB. A random set index will be generated
within the region [sbase[Sn − 1, 0], sbase[Sn − 1, 0] +min (ssize, nsets )] for
random fill.



Secure TLBs ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

1. void _gcry_mpi_powm (gcry_mpi_y_ res,
gcry_mpi_t base, gcry_mpi_t expom gcry_mpi_t_mod)

2. {
3.      mpi_ptr_t rp, xp; /* pointers to MPI data */
4.      mpi_ptr_t tp;  
5.      ...
6.      for(;;) {
7.       /* For every exponent bit in expo*/
8.     _gcry_mpih_sqr_n_basecase(xp, rp);
9.     if(secret_exponent || e_bit_is1) {
10.         /* unconditional multiply if exponent is
11.               * secret to mitigate FLUSH+RELOAD
12.               */
13.              _gcry_mpih_mul(xp, rp);
14.          }
15.          if(e_bit_is1) {
16.               /*e bit is 1, use the result*/
17.               tp = rp; rp = xp; xp = tp;
18.               rsize = xsize;
19. }
20.      }
21. }

Figure 5: Code sample for one of the variants of modular expo-
nentiation from libgcrypt version 1.8.2. Pointers rp , xp and tp are
defined (blue dashed square). rp and xp are used for both e_bit is 1
or 0 (green dashed square). tp will only be accessed when e_bit is 1
(red square).

the original page address is finally requested, and “no fill” fill_type
will be sent to the TLB to obtain the translation. Finally, (7) this
address will be stored in the buffer, without modifying TLB entries,
and be sent back to the processor.

4.2.3 RF TLB vs. RF Cache. As a possible alternative, the “random
fill” part can be done asynchronously during the idle cycles, as has
been proposed for secure caches, e.g., [18]. However, using this
way, programs which are TLB intensive for accesses to the secure
region will starve “random fill” and result in no random entries
being put into the TLB, which will negatively impact the security
offered by the TLB.

The proposed RF TLB differentiates victim and attacker, secure
and non-secure region and has a different random fill scheme for
pages within or outside of the secure region for both attacker and
victim. That helps RF TLB prevent all types of TLB timing-based
vulnerabilities. Meanwhile, RF Cache [18] only differentiates victim
and attacker and cannot prevent all types of cache timing-based
vulnerabilities [11].

5 SECURITY EVALUATION
5.1 Micro Security Benchmarks
Most of the types of the attacks derived with the three-step model
do not correspond to already known attacks. Some exceptions in-
clude, for example, the TLBleed attack [8], which was demonstrated
using the libgcrypt’s RSA cryptographic implementation. In the RSA
implementation, whether the pointer tp is accessed depends on the
secret e_bit in _gcry_mpi_powm function (line 17, Figure 5). In TL-
Bleed, the attacker can use the TLB Prime + Probe attack strategy to
deploy an attack which allows them to learn whether tp is accessed,
to know the secret bit. However, such examples for most of the
other attacks do not exist.

Thus, we developed micro security benchmarks which can be
used to test TLBs to check if they are vulnerable to each of the

1. #include “riscv_test.h”
2. #include “test_macro.h”
3. RVTEST_RV64U # Define TVM used by program.
4. # Test code region.  
5. RVTEST_CODE_BEGIN # Start of test code.
6.
7. csrw sbase, 3      # Set page base of secure region
8. csrw ssize, 3 # Set page size of secure region
9. ...
10. # Attacker primes the whole TLB/specific set
11. csrw process_id, 0 # Set current process for simulation 
12. # 0 is attacker; 1 is victim
13. la x1, tdat2048
14. ldnorm x2, 0(x1)
15. ...
16. # Victim does serect data access/secure address translation
17. csrw process_id, 1 
18. la x1, tdat1024
19. ldrand x2, 0(x1)
20. ...
21. csrr x3, tlb_miss_count # Read TLB miss counter
22. # Attacker probe the TLB set
23. csrw process_id, 0 
24. la x1, tdat2048
25. ldnorm x2, 0(x1)
26. ...
27. csrr x4, tlb_miss_count # Read TLB miss counter again
28. beq x3, x4, no_tlb_miss # Compare and see if there is TLB  
29. #  miss (slow access)
30. ...
31. RVTEST_PASS # Signal success.
32.no_tlb_miss:
33. RVTEST_FAIL # Output info for no TLB miss
34. RVTEST_CODE_END # End of test code.
35.
36. # Data section.
37. RVTEST_DATA_BEGIN # Start of test data region.
38. TEST_DATA
39. tdat00: # A big array is initialized 
40. tdat0: .dword 0
41. ...
42. tdat16489: .dword 16489
43. RVTEST_DATA_END # End of test data region.
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Figure 6:Code sample for TLB Prime + Probemicro security bench-
mark Ad ⇝ Vu ⇝ Ad (slow) variant, used in simulation testing of
Rocket Core-based RISC-V.

attack types. To generate the micro security benchmarks, we lever-
age a Python script that follows a three-step template to generate
assembly code of all the types of vulnerabilities showed in Table 2.

Figure 6 is a micro security benchmark example of the Ad ⇝
Vu ⇝ Ad (slow) variant of TLB Prime + Probe vulnerability. Inside
the benchmark, first there is standard prologue with include state-
ments (line 1-5), then the secure region (sbase , ssize) is set (line
7-8). For the specific vulnerability, the three steps are executed in
the order of Ad (line 10-15), Vu (line 16-20) and Ad (line 22-26).
Out-of-secure-address-region d will be accessed using the norm
type of memory access while inside-secure-address-region u will
use rand type of memory access, corresponding to the non-secure
and secure page address accesses illustrated in Section 4.2.2, respec-
tively. Attacker measures the final step’s timing (line 21, 27-29). The
same script can be used to generate assembly tests for all SA TLB,
SP TLB, and RF TLB.

5.2 Channel Capacity
An attacker gains knowledge about the secret address translation
through TLB timing channel by observing the timing of address
translation in a TLB block. The observed timing may depend on
the victim’s prior behavior.

There are two possible victim’s behaviors B: whether the victim’s
secret-dependent memory access results in address translation, Vu ,
which maps to the TLB block tested by the attacker or not. There
are also two possible attacker’s observations O : whether attacker
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Table 3: Probabilities of different victim behaviors B and attacker
observations O .

Attacker’s
observation O

Miss Hit

Victim’s
beha-
vior
B

Memory access (or invalidation)
maps to the same address/index

attacker tests
p1 1 − p1

Memory access (or invalidation)
does not map to the same
address/index attacker tests

p2 1 − p2

observes slow access due to a TLB miss or fast access due to a
TLB hit.

To evaluate the relation between the victim’s behaviors and the
attacker’s observations, we define p1 and p2 as listed next, and
shown in Table 3: When the victim behavior triggers a translation
of an address that maps to the TLB block the attacker tests, we use
p1 to denote the probability the attacker observes a TLB miss, and
1 − p1 as the probability the attacker observes a TLB hit. When
the victim’s behavior triggers a translation of an address that does
not map to the TLB block the attacker tests, we use p2 to denote
the probability the attacker observing a TLB miss, and 1 − p2 for
observing a hit.

To provide the optimal scenario for attacker, we assume the
probability of victim’s access Vu mapping to the TLB block tested
by the attacker to be the same as the probability ofVu not mapping
to the block, i.e. both are 1

2 .
We use channel capacity [7] to quantify the amount of informa-

tion about the secret address translation that the attack gains from
a specific timing-based attack as follows:

C ≡ I (B;O ) ≡
∑
b,o

p (b,o)loд
p (b,o)

p (b)p (o)

≡
p1
2
loд

2p1
p1 + p2

+
p2
2
loд

2p2
p1 + p2

+
1 − p1
2

loд
2(1 − p1)
2 − p1 − p2

+
1 − p2
2

loд
2(1 − p2)
2 − p1 − p2

(1)

where I (B;O ) denotes the mutual information between victim’s
behavior B and attacker’s observation O. The p (b) and p (o) are the
marginal probability distribution functions of victim’s behavior B
and attacker’s observation O. The p (b,o) is the joint probability
function of victim’s behavior B and attacker’s observation O.

The p1 and p2 will have different values for each type of vulner-
ability, and also depend on the type of the TLB. Especially, if a TLB
is able to defend against a specific type of an attack, the mutual
information C should be zero for that attack type. Otherwise, the
attacker can gain some knowledge about the victim’s behavior. Be-
low we analyze the C for different TLB types, and compare with
theoretical calculations.

5.3 Theoretical Result and Security Evaluation
of the TLBs

We implemented SP TLB and RF TLB, as illustrated in Section 4, as
well as a SA TLB, in Chisel code and integrated them into the Rocket
Core-based RISC-V processor7. In addition to implementing the
TLBs, new TLB miss performance counters were implemented and
are used by the simulation to determine slow or f ast TLB accesses
based on whether miss occurs or not, respectively. The Chisel code
for the whole processor with the new TLBs was used to generate
cycle-accurate simulations.

The simulated hardware was used to execute the micro security
benchmarks previously discussed in Section 5.1. For each bench-
mark, it was run 500 times each for “mapped” or “not mapped”
(shown in Table 3) victim address for the tested TLB block, there-
fore in total 1000 times. Multiple runs are needed as the RF TLB
leverages randomization and we need to average results over many
runs. For each TLB type, each of the benchmarks was run, thus 24
vulnerability types × 1,000 simulations = 24,000 runs.

The security evaluation focused on 8-way 32-entry SA TLB as
the example. With this setup, the system software will take 4 out
of 32 entries and distribute the 4 entries in different sets, so 28
different user pages are sufficient to prime the TLB. We assume two
cases for the victim: one has 6 contiguous pages (3 pages out of the
6 are secure), another has 31 contiguous secure pages (to simulate
contention between secure address translations).

5.3.1 Security of SA TLB, SP TLB and RF TLB. The theoretical and
the simulation results of all the TLBs are listed and compared in
Table 4.

SA TLB. SA TLB has simulated and theoretical C = 0 for TLB
Flush + Reload, TLB Evict + Probe, and TLB Prime + Time attacks,
thus it defends these attacks. SA TLB is not able to prevent internal
TLB Collision (p1 = 0, p2 = 1, C = 1) and TLB Evict+Time, TLB
Prime+Probe and TLB Bernstein’s Attack (p1 = 1, p2 = 0, C = 1).

SP TLB. For SP TLB, all the vulnerabilities that SA TLB can
prevent are also prevented by SP TLB. Further, TLB Evict + Time
and TLB Prime + Probe vulnerability can be prevented by SP TLB.
For these two types of vulnerabilities, p1 = p2 = 0, C = 0.

On the other hand, SP TLB is still vulnerable to TLB version
of Bernstein’s Attack (p1 = 1, p2 = 0, C = 1) and TLB Internal
Collision vulnerability (p1 = 0, p2 = 1, C = 1) since victim’s own
address contention and TLB hit due to its own accesses cannot be
defended by partitioning.

RF TLB. The RF TLB can defend all the vulnerabilities that SA
TLB can defend. There are then 14 vulnerabilities left to consider,
which can be further reduced to simplify the analysis: Va and Aa
belong to a, similarly, Vaalias and Aaalias are aalias , Vd and Ad
are d . Following this way, we can simplify the 14 patterns into 6
patterns for RF TLB, which are listed below. The sec_range stands
for secure region, its value is 3 in the first 3 cases and 31, to simulate
contention between secure address translations, in the last 3 cases.
The nset and nway stands for the number of sets and ways, whose
value is 4 and 8 in the simulation tests, respectively. prime_num
stands for the virtual page address number that can prime the whole

7Chisel commit ID: 980778b, Rocket Chip commit ID: aca2f0c
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Table 4:Comparison of SATLB, SPTLB andRFTLB simulation and theoretical results.p1* andp2* represent probabilities based on simulation.
p1 and p2 are theoretical calculations. C* and C represent mutual information based on simulation and theoretical calculation, respectively.
nM,M and nN ,M denote number of misses when the victim’s secret address and test address map and do not map to each other, respectively.
BoldC* andC are the ones with value 0 or about 0, indicating that this TLB is able to prevent the corresponding vulnerability. Small numbers
are rounded up.

SA TLB SP TLB RF TLB
At-
tack
Cate-
gory

Vulnerabil-
ity
Type

nM,M p1∗ p1 nN ,M p2∗ p2 C* C nM,M p1∗ p1 nN ,M p2∗ p2 C* C nM,M p1∗ p1 nN ,M p2∗ p2 C* C

TLB
In-

ternal
Coll-
ision

Ad ⇝ Vu
⇝ Va (fast) 0 0 0 500 1 1 1 1 2 0.01 0 500 1 1 0.98 1 343 0.69 0.67 333 0.67 0.67 0.01 0

Vd ⇝ Vu
⇝ Va (fast) 0 0 0 500 1 1 1 1 0 0 0 500 1 1 1 1 328 0.66 0.67 338 0.68 0.67 0.01 0

Aaalias ⇝
Vu ⇝ Va
(fast)

10 0.02 0 500 1 1 0.93 1 3 0.01 0 500 1 1 0.97 1 485 0.97 0.97 483 0.96 0.97 0.01 0

Vaalias ⇝
Vu ⇝ Va
(fast)

9 0.02 0 500 1 1 0.94 1 2 0.01 0 500 1 1 0.98 1 489 0.98 0.97 486 0.97 0.97 0.01 0

Ainv ⇝ Vu
⇝ Va (fast) 0 0 0 500 1 1 1 1 0 0 0 500 1 1 1 1 322 0.65 0.67 353 0.71 0.67 0.01 0

Vinv ⇝ Vu
⇝ Va (fast) 1 0.01 0 500 1 1 0.99 1 0 0 0 500 1 1 1 1 328 0.66 0.67 349 0.70 0.67 0.01 0

TLB
Flush
+

Reload

Ad ⇝ Vu
⇝ Aa (fast) 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Vd ⇝ Vu
⇝ Aa (fast) 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Aaalias ⇝
Vu ⇝ Aa

(fast)
500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Vaalias ⇝
Vu ⇝ Aa

(fast)
500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Ainv ⇝ Vu
⇝ Aa (fast) 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Vinv ⇝ Vu
⇝ Aa (fast) 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

TLB
Evict
+Time

Vu ⇝ Ad
⇝ Vu (slow) 500 1 1 0 0 0 1 1 0 0 0 26 0.05 0 0.03 0 0 0 0.01 0 0 0.01 0 0

Vu ⇝ Aa
⇝ Vu (slow) 500 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0.01 0.01 7 0.01 0.01 0.01 0

TLB
Prime
+Probe

Ad ⇝ Vu
⇝ Ad
(slow)

500 1 1 1 0.01 0 0.99 1 0 0 0 20 0.04 0 0.02 0 167 0.33 0.33 158 0.32 0.33 0.01 0

Aa ⇝ Vu
⇝ Aa
(slow)

500 1 1 1 0.01 0 0.99 1 0 0 0 2 0.01 0 0.02 0 135 0.27 0.26 148 0.30 0.26 0.01 0

TLB
Bern-
stein’s
Attack

Vu ⇝ Va
⇝ Vu (slow) 500 1 1 1 0.01 0 0.99 1 500 1 1 1 0.01 0 0.99 1 0 0 0.01 10 0.02 0.01 0.01 0

Vu ⇝ Vd
⇝ Vu (slow) 500 1 1 0 0 0 1 1 500 1 1 31 0.06 0 0.83 1 0 0 0.01 0 0 0.01 0 0

Vd ⇝ Vu
⇝ Vd (slow) 500 1 1 0 0 0 1 1 500 1 1 0 0 0 1 1 160 0.32 0.33 163 0.33 0.33 0 0

Va ⇝ Vu
⇝ Va (slow) 500 1 1 0 0 0 1 1 500 1 1 0 0 0 1 1 35 0.07 0.09 22 0.04 0.09 0.01 0

TLB
Evict
+Probe

Vd ⇝ Vu
⇝ Ad
(slow)

500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Va ⇝ Vu
⇝ Aa
(slow)

500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

TLB
Prime
+Time

Ad ⇝ Vu
⇝ Vd (slow) 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

Aa ⇝ Vu
⇝ Va (slow) 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0 500 1 1 500 1 1 0 0

4-way 32-entry TLB in RISC-V. The theoretical probabilities p1 and
p2 for the 6 combined patterns are:

• Vu ⇝ d ⇝ Vu (slow): p1=p2= 1
sec_ranдe ×

1
min (nset,sec_ranдe )×nway =

1
3 ×

1
3×8=0.01.

• d/inv ⇝ Vu ⇝ a (fast): p1=p2=1- 1
sec_ranдe =1 −

1
3=0.67.

• d ⇝ Vu ⇝ d (slow): p1=p2= 1
sec_ranдe =

1
3=0.33.

• Vu ⇝ a ⇝ Vu (slow): p1=p2=(
nway

sec_ranдe )
nway=( 8

31 )
8=0.01.

• aalias ⇝ Vu ⇝ a (fast): p1=p2=1- 1
sec_ranдe = 1 − 1

31=0.97.

• a ⇝ Vu ⇝ a (slow): Because Vu cannot get hit due to Aa ,
there are two cases:
– Aa ⇝ Vu ⇝ Aa : p1=p2=

nway
sec_ranдe =

8
31=0.26.

– Va ⇝ Vu ⇝ Va :p1=p2=
sec_ranдe−pr ime_num

sec_ranдe = 31−28
31 =0.09.

All the mutual information derived derived based on the above
probabilities for the RF TLB is 0 for the theoretical calculations and
about 0 for the simulation results as shown in Table 4, indicating
RF TLB is secure against these attacks.
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5.3.2 Comparison of the Different TLBs. As can be seen from Ta-
ble 4, the simulation results match the theoretical values closely,
indicating the actual hardware Chisel implementation of TLBs
matches the theoretical calculations we presented.

For the TLBs, normal SA TLB can prevent 10 types of timing-
based vulnerabilities due to requirement of deriving TLB hit for
both address and process ID. For the SP TLB, it is able to prevent
external interference by partitioning but is weak at preventing
internal interference. Therefore, SP TLB is able to prevent 4 more
types of vulnerabilities. However, internal hit-based vulnerabilities,
such as Vinv ⇝ Vu ⇝ Va (fast), can still happen in SP TLB. For RF
TLB, random fill technique is able to de-correlate the TLB fill with
the memory access. This is able to prevent all classes of timing-
based vulnerabilities listed in Table 2.

6 PERFORMANCE EVALUATION
6.1 Hardware FPGA Setup
The SP TLB and RF TLB were implemented in Chisel hardware con-
struction language and realized in the Rocket Core-based RISC-V
processor. SP TLB related logic is about 300 lines of Chisel code,
while RF TLB related logic is about 500 lines of Chisel code. The
same hardware code was used for simulation (Section 5) and the
performance evaluation (this Section), with minor changes for the
FPGA version. Further, to allow for performance evaluation un-
der realistic settings and with use of Linux, the RISC-V with the
secure TLBs was synthesized on the Xilinx ZC706 and ZedBoard
Evaluation FPGA boards.

6.2 Performance Evaluation Setup
To enable performance measurements, a TLB miss counter was
added, and cycle counter and instruction counters were enabled
in user mode. The counters are used to collect data during execu-
tion of the cryptographic program and benchmarks. The collected
data were: instructions per cycle (IPC) and TLB misses per kilo
instructions (MPKI).

Two TLB sizes were selected for evaluation. 32-entry, 4-way SA
TLB corresponds to TLBs used in Intel’s Haswell processors [22],
while the 128 entry corresponds to TLBs used in Intel’s Nehalem
microarchitecture [15].

The following L1 D-TLB configurations were tested. FA TLB
with 32 entries (labeled FA 32 in figures), SA TLB with 32 entries,
2-way (labeled 2W 32 in figures), SA TLB with 32 entries, 4-way
(labeled 4W 32 in figures), and the same configurations, but for 128
entries (labeled FA 128, 2W 128, and 2W 128, respectively in figures).
All of these were used for baseline Standard TLB, SP TLB and RF
TLB. In addition, a naive solution to prevent all TLB attacks is to
disable the TLB. While in our RISC-V setup it is not possible to fully
disable the TLB, we include TLB with 1 entry (labeled 1E in figures)
as closest possible configuration to show its impact on performance.
In total, 19 TLB configurations were tested on our FPGA setup.

The SP TLB was tested with half the ways to be set victim par-
tition. The RF TLB was tested where the secure region was set by
the software, see SecRSA discussion below.

For performance evaluation, we use the RSA implementation
from TLBleed attack [8]8. Further, we selected TLB-intensive SPEC
2006 integer and floating point benchmarks to evaluate the over-
heads introduced by the secure TLB designs. The four selected
benchmarks are: 453.povray, 471.omnetpp, 483.xalancbmk, and
436.cactusADM9. The different configurations are listed below.

RSA. The libgcrypt’s RSA decryption routine was run 50, 100 and
150 times in series to simulate multiple uses of secret cryptographic
key that the attacker may want to learn via the timing channels.
Each time the same hard-coded key was used. No security is enabled
for this configuration.

SecRSA. This is same as RSA configuration, except for SP and
RF TLBs the security features are enabled to protect the RSA. For
SP TLB, the SecRSA’s process ID is set as the “victim”, and all the
address translations will be put in the victim partition in the SP TLB,
while other processes’ address translation will be in the attacker par-
tition. For the RF TLB, SecRSA’s .data section pages including the
ones referenced by the tp, rp and xp pointers (the number of these
pages is 3, and the pointers are previously discussed in Section 5.1)
are protected and accesses are randomized (see Section 4.2).

RSAwith povray, omnetpp, xalancbmk and cactusADM. In
order to better see the performance impact on the whole system
when a secure program is running, the RSA as discussed above,
was run in parallel with each of the selected TLB-intensive SPEC
benchmarks. The RSA continuously performs the decryption (50,
100 and 150 times), while the SPEC benchmark runs in background.

SecRSAwithpovray, omnetpp,xalancbmk and cactusADM.
Same as above, but security is enabled for RSA, as discussed in Se-
cRSA case.

6.3 Standard TLB Performance
Standard TLB’s IPCs and MPKIs are shown in Figure 7a and Fig-
ure 7d. Larger TLB has smaller MPKI and better IPC. RSA routine
is relatively small, so it experiences very few MPKIs. When SPEC
benchmarks are included, the MPKIs increase and IPC drops. Inter-
estingly, although cactusADM was specified as TLB-intensive in
[21], it is not affected much by TLB size. Additionally, in most of
the cases, IPC and MPKI give similar result for 50, 100 and 150 runs.
This is the same for SP TLB and RF TLB.

Note, the 1E configuration approximates no TLB scenario. This
has on average 38.3% worst performance, based on IPC. Thus,
achieving security by disabling the TLB will impact system perfor-
mance significantly.

Further, FA TLB (i.e. FA 32 and FA 128) have as expected better
performance than SA configurations, and can prevent 8 more types
of attacks compared with 10 types that SA TLB can prevent. How-
ever, FA TLBs have area impact of about 0.6% more Slice LUTs for
32 entries, and 3.3% more Slice LUT for 128 entries, see Section 6.6.
The FPGA runs slow enough at 50MHz for ZC706 and at 25MHz
for ZedBoard that the impact of FA configuration on the critical
path is not observed.

8RSA from Libgcrypt 1.8.2: https://gnupg.org/ftp/gcrypt/libgcrypt/
9The “ref” or “train” inputs to SPEC benchmarks were used, the “train” inputs were
used if the benchmark was not able to run with “ref” inputs on the FPGA setup due to
memory size limitation.
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Figure 7: Evaluation of different configuration of TLBs. (a)-(c) IPC of SA TLB, SP TLB and RF TLB, respectively. (d)-(f) MPKI of SA TLB, SP
TLB and RF TLB, respectively. Every set of bars in the graph follows the order: (1E only for IPC of SA TLB), FA 32, 2W 32, 4W 32, FA 128, 2W
128 and 4W 128.

6.4 SP TLB Performance
Performance evaluation results for the SP TLB are shown in Fig-
ure 7b and Figure 7e. For the SP TLB, half the ways are set to the
victim partition. When victim program RSA (SecRSA) is run alone
or run with a SPEC benchmark, the secure data of RSA is allocated
to half of the ways in the victim partition, and all other data and
all SPEC data is in the attacker partition. Overall, IPC is about 0.5%
better compared to standard TLB. This may be due to the system
code getting invoked more often for the SP TLB, than for the stan-
dard TLB, and the system code may have better overall IPC. From
the evaluation result, SP additions for the TLB do not influence IPC
too much.

TheMPKI is significantly higher than standard TLB (207.5%more
or 3.07x), as again the effective TLB size is one half. Assignment of
different number of ways for victim and attacker partitions, and its
impact on performance could be further explored. Further, ideas of
coalescing in TLBs [21] could be explored to improve the effective
TLB size for victim and attacker partitions.

6.5 RF TLB Performance
Performance evaluation results for the RF TLB are shown in Fig-
ure 7c and Figure 7f. The IPC is about 1.4% higher compared to SA
TLB. Again, RF TLB may involve even more system code, in which

case a better IPC is derived. Meanwhile, comparing the correspond-
ing configurations, the MPKI of RF TLB is about 64.5% better than
SP TLB, while 9.0% worse than SA TLB. Thus, RF TLB provides both
better performance and better security than SP TLB, while being as
good as standard TLB in performance. It has about 39.4% better IPC
than disabling TLB (approximated by the 1E configuration) while
providing the same security.

6.6 Area Overhead
We further evaluate the area overhead of the new secure additions.
We use the number of Slice Look-Up Table (LUT), Slice Registers,
Block RAMs and DSPs from the FPGA synthesis reports for the
Xilinx ZC706 FPGA as a proxy for the area. For all the configura-
tions, the Block RAM usage is 24 and the DSP usage is 15. Slice LUT
and Registers numbers are shown in Table 5. The baseline is again
32-entry, 4-way SA L1 D-TLB.

Comparing to 4-way 32-set SA TLB, 4-way 32-set SP TLB has
0.4% more Slice LUTs and 0.1% more Slice Registers. 4-way 32-set
RF TLB has 6.2% more Slice LUTs and 5.5% more Slice Registers.
On average for all the configurations of TLBs, SP TLB has about
0.2% less Slice LUTs and 1.3% less Slice Registers compared with
SA TLB, while RF TLB has about 6.5% more Slice LUTs and 7.9%
more Slice Registers compared with SA TLB.
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Table 5:Area overhead of the new secure additions.∆ Slice LUT and
∆ Slice Registers columns show the the difference from the 32-entry,
4-way SA TLB baseline.

Configu-
rations

Slice
LUTs

∆ Slice
LUTs

Slice
Registers

∆ Slice
Registers

1E 35266 -777 18359 -4406

SA
TLB

FA 32 36395 352 22199 -566

2W 32 36298 255 23513 748
4W 32 36043 − 22765 −

FA 128 40177 4134 33815 11050
2W 128 39684 3641 38630 15865
4W 128 38107 2064 35694 12929

SP
TLB

FA 32 36499 456 22251 -514

2W 32 36387 344 23523 758
4W 32 36183 140 22798 33
FA 128 40568 4525 33824 11059
2W 128 38609 2566 38521 15756
4W 128 38049 2006 35659 12894

RF
TLB

FA 32 38281 2238 22697 -68

2W 32 38510 2467 25643 2878
4W 32 38266 2223 24018 1253
FA 128 42740 6697 34252 11487
2W 128 42509 6466 45823 23058
4W 128 41259 5216 39538 16773

7 CONCLUSION
This paper proposed a novel three-step modeling approach that
exhaustively enumerates all possible TLB timing-based vulnera-
bilities. It showed how to automatically generate micro security
benchmarks that test for the TLB vulnerabilities. It gave details of
two new hardware secure TLB designs: a Static-Partition (SP) TLB
and a Random-Fill (RF) TLB. The simulations confirmed the theo-
retical channel capacity calculations and full system performance
on FPGA showed that the new secure TLBs are as good as regular
TLBs, while protecting against the various attacks. The proposed
secure TLBs can defend not only against the previously publicized
attacks, but also other possible timing-based attacks in TLBs found
using our new three-step modeling approach.
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APPENDIX A: SOUNDNESS ANALYSIS OF TLB
THREE-STEP MODEL
In this section we analyze the soundness of the three-step model
to demonstrate that the three-step model can cover all possible SA
TLB timing-based vulnerabilities. If there is a vulnerability, it can
always be reduced to a model that requires only three steps.

Let β denote the number of memory page related operations in
a vulnerability.

When β = 1, there is only one memory page related operation,
and it is not possible to create interference between memory page
related operations since two memory page related operations are
the minimum requirement for an interference. Furthermore, β = 1
corresponds to the three-step pattern with both Step 1 and Step 2
to be ⋆ since the TLB state ⋆ gives no information. These types are
not listed in Table 2, which shows all the effective vulnerabilities.
Therefore, attack cannot happen when β = 1.

When β = 2, it satisfies the minimum requirement of an inter-
ference for memory page related operations and corresponds to the
three-step cases where Step 1 is ⋆. Three-step cases where Step 1
is ⋆ does not have corresponding effective vulnerabilities shown in
Table 2. So β , 2.

When β = 3, we exhaustively list all possible three-step memory
page related operations in Section 3.3 and we conclude that there
are in total 24 types of effective vulnerabilities, of which 16 are new
compared to what is known in literature. So β = 3.

When β > 3, the pattern of memory related operations for a
vulnerability can be deducted using the following rules:

• Rule 1: If there is a sub-pattern such as { ...⇝ ⋆⇝ ...}, the
longer pattern can be divided into two separate patterns,
where ⋆ is assigned as Step 1 of the second pattern. This
is because ⋆ gives no timing information, and the attacker
loses track of the cache state after ⋆. This rule should be
recursively checked until there are no sub-patterns with a ⋆
in the middle or last step (⋆ in the last step will be deleted).
• Rule 2: If there is a sub-pattern such as { ...⇝ Ainv/Vinv ⇝
...}, the longer pattern can be divided into two separate pat-
terns, where Ainv/Vinv is assigned as Step 1 of the second
pattern. This is because Ainv/Vinv will flush all the tim-
ing information of the current block and it can be used as
the flushing step for Step 1, e.g., vulnerability { Ainv ⇝
Vu ⇝ Aa ( f ast )} shown in Table 2. It cannot be candidate
for middle steps or the last step because it will flush all tim-
ing information, making the attacker unable to correspond
the final timing with victim’s sensitive address translation
information. This rule should be recursively checked until
there are no sub-patterns with a Ainv/Vinv in the middle or
last step (Ainv/Vinv in the last step will be deleted).
• Rule 3: If the remaining memory page related operations
have a sub-pattern that has two adjacent steps both related

Algorithm 1 β -Step (β > 3) Pattern Reduction

Require: β : number of steps of the pattern
step_l ist : a two-dimensional dynamic-size array. step_l ist [0] con-
tains the states of each step of the original pattern in order.
step_l ist [1], step_l ist [2], ... is empty initially.

Ensure: r educe_l ist : reduced effective vulnerability pattern(s) array. It
will be an empty list if the original pattern does not correspond to an
effective vulnerability.

1: while step_l ist .contain(⋆) and ⋆.index not 0 do
2: Rule_1 (step_l ist )
3: end while
4: while (step_l ist .contain(Ainv ) and Ainv .index not 0) or

(step_l ist .contain(Vinv ) and Vinv .index not 0) do
5: Rule_2 (step_l ist )
6: end while
7: while step_l ist .contain(adjacent not_u_operation or
u_operation) do

8: Rule_3 (step_l ist )
9: end while
10: r educe_l ist = Rule_4 (step_l ist )
11: return r educe_l ist

to known addresses or both related to unknown address
(including repeating states), the two adjacent steps can be
reduced to only one.
– For two unknown adjacent memory page related opera-
tions (containingu, denoted asu_operation), althoughu is
unknown, both of the accesses target on the sameu so can
be reduced. E.g., {... ⇝ Vu ⇝ Vu ⇝ ...} can be reduced
to {...⇝ Vu ⇝ ...}.

– For two known adjacent memory related operations (de-
noted as not_u_operation), these two operations result in
a deterministic state of the cache block, so these two steps
can be reduced to only one step. E.g., {...⇝ Ad ⇝ Va ⇝
...} can be reduced to {...⇝ Va ⇝ ...}.

The Rule 3 should be recursively checked until there are
no two adjacent steps both related to known addresses or
both related to unknown address, i.e., the resulting pattern
must be of a format of u_operation and not_u_operation
alternating.
• Rule 4: After recursive reductions of Rule 1, Rule 2 and Rule 3,
either β ≤ 3 holds, or the following sub-pattern still exists:
– ...⇝ u_operation ⇝ not_u_operation ⇝ u_operation
⇝ ...

If the pattern contains this sub-pattern, the three-step sub-
pattern must be an effective vulnerability according to Ta-
ble 2 and reduction rules shown in Section 3.3. The corre-
sponding pattern can be treated effective and the checking
is done.

We make use of the four Rules in the way shown in Algorithm 1
either i) to reduce a β-step (β > 3) pattern to be within three steps
or ii) demonstrate that the β-step pattern can be mapped to one or
more three-step vulnerabilities if it is effective.

In conclusion, the three-step model canmodel all possible timing-
based SA TLB vulnerability with any β steps. Attacks which are
represented by more than three steps can be always reduced to one
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Table 7: The table shows additional possible timing-based TLB vul-
nerabilities when different types of TLB invalidations are possible.
The column headings are the same as in Table 2.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3
TLB Internal
Collision

Ainva Vu Va (fast) IH (1)
V inv
a Vu Va (fast) IH (1)

TLB Flush
+ Reload

Ainva Vu Aa (fast) EH new
V inv
a Vu Aa (fast) EH new

TLB Reload
+ Time

V inv
u Aa Vu (fast) EH new

V inv
u Va Vu (fast) IH new

TLB Flush
+ Probe

Aa V inv
u Aa (slow) EH new

Aa V inv
u Va (slow) IH new

Va V inv
u Aa (slow) EH new

Va V inv
u Va (slow) IH new

TLB Flush
+ Time

Vu Aainv Vu (slow) EH new
Vu Vainv Vu (slow) IH new

TLB Internal
Collision

Invalidation

Ainv Vu V inv
a (slow) IH new

V inv Vu V inv
a (slow) IH new

Ad Vu V inv
a (slow) IH new

Vd Vu V inv
a (slow) IH new

Aaalias Vu V inv
a (slow) IH new

Vaalias Vu V inv
a (slow) IH new

TLB Flush
+ Flush

Ainva Vu V inv
a (slow) IH new

V inv
a Vu V inv

a (slow) IH new
Ainva Vu Ainva (slow) EH new
V inv
a Vu Ainva (slow) EH new

TLB Flush
+ Reload

Invalidation

Ainv Vu Ainva (slow) EH new
V inv Vu Ainva (slow) EH new
Ad Vu Ainva (slow) EH new
Vd Vu Ainva (slow) EH new

Aaalias Vu Ainva (slow) EH new
Vaalias Vu Ainva (slow) EH new

TLB Reload +
Time Invalidation

V inv
u Aa V inv

u (slow) EH new

V inv
u Va V inv

u (slow) IH new

TLB Flush
+ Probe

Invalidation

Aa V inv
u Ainva (fast) EH new

Aa V inv
u V inv

a (fast) IH new
Va V inv

u Ainva (fast) EH new
Va V inv

u V inv
a (fast) IH new

TLB Evict +
Time Invalidation

Vu Ad V inv
u (fast) EM new

Vu Aa V inv
u (fast) EM new

TLB Prime +
Probe Invalidation

Ad Vu Ainvd (fast) EM new

Aa Vu Ainva (fast) EM new
TLB

Bernstein’s
Invalidation

Attack

Vu Va V inv
u (fast) IM new

Vu Vd V inv
u (fast) IM new

Vd Vu V inv
d (fast) IM new

Va Vu V inv
a (fast) IM new

TLB Evict +
Probe Invalidation

Vd Vu Ainvd (fast) EM new

Va Vu Ainva (fast) EM new

TLB Prime +
Time Invalidation

Ad Vu V inv
d (fast) IM new

Aa Vu V inv
a (fast) IM new

TLB Flush +
Time Invalidation

Vu Ainva V inv
u (fast) EH new

Vu V inv
a V inv

u (fast) IH new

(1) Double Page Fault attack [12].

Table 6: The 7 specific-address-invalidation-related states for a sin-
gle TLB block.

States Description

V inv
u

The TLB block previously containing translation for amemory
address u is now invalid. Attacker does not know u , but u is
from a sensitive memory range x of memory locations, range
which is known to the attacker. The address u may have same
page index as a and thus conflict with them in the TLB block.

Ainva
or

V inv
a

The TLB block previously containing translation for amemory
address a is now invalid. The attacker knows the address a,
independent of whether the access was by the victim or the
attacker themselves. The address a is from within the range
of sensitive locations x . The address a may or may not be the
same as the address u .

Ainv
aalias
or

V inv
aalias

The TLB block previously containing translation for amemory
address aalias is now invalid. The address aalias is within
the sensitive memory range x . It is not the same as a, but it
has same page index and maps to the same TLB block, i.e. it
“aliases” to the same block.

Ainvd
or

V inv
d

The TLB block previously containing translation for amemory
address d is now invalid. The address d is not within the
sensitive memory range x .

(or more) vulnerabilities from our three-step model; and thus, using
more than three step is not necessary.

APPENDIX B: ADDITIONAL ATTACKS
Table 7 shows additional possible timing-based TLB vulnerabilities
when different types of TLB invalidations are possible, which are
listed in Table 6. The translation can be “removed” from the TLB
block by the victim or the attacker as the result of TLB block being
invalidated, e.g., through a dedicated TLB flush instruction. We
are unaware of existing RISC-V ISAs or systems which have such
features, but future extensions may add such features and they
could cause security bugs. For example, invalidating a specific TLB
entry for some processors on Linux is possible by using mprotect()
system call, which changes the access protection bits for the calling
process’s memory pages.

If it is possible for the attacker or the victim to trigger invali-
dation of a specific address or entry in the TLB, then attacks such
as TLB Flush + Time become possible. Invalidation of a specific
address or entry is needed in Step 2 to derive information about
Vu in the last step.

If invalidation of TLB can be for a specific address or entry and
has variable timing, then attacks such as TLB Flush + Flush become
possible. One performance improvement to TLB could be that for
each invalidation, check the TLB first. If TLB entry is already invalid,
the invalidation is done. If it is valid, then during the second cycle,
update the TLB entry to mark it as invalid. This may shorten each
cycle, but would introduce f ast or slow timing differences that lead
to the further attacks.
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