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Abstract—Modern machine learning (ML) models need to
process both continuous and categorical/discrete feature values,
e.g., deep learning recommendation models (DLRMs) rely on
users’ categorical features to make recommendations, and large
language models (LLMs) take discrete words/tokens as input.
ML models process such discrete features by converting them to
numerical vectors called embeddings. Unfortunately, embedding
table lookups are vulnerable to side-channel attacks, as table
indices leak input feature values. Due to the size of the embedding
tables, using conventional oblivious computing techniques such
as ORAM to protect memory access patterns to the tables incur
significant overhead. In this paper, we propose to use a different
technique, Deep Hash Embedding (DHE), to secure embedding
table accesses, even though it is not commonly used today due
to its compute-intensive nature. We investigate three embedding
generation methods with side-channel protection: linear scan
of the embedding table, embedding table protected by ORAM,
and DHE. Our experiments on DLRMs and LLMs show that
DHE or a hybrid scheme combining DHE and linear scan can
significantly improve both performance and memory footprint
compared to the conventional ORAM protection. For DLRM
on Criteo datasets, our hybrid scheme improves performance by
about 4× for large embedding tables, and up to 3.08× end-to-end
over the optimized ORAM baseline without any loss in accuracy,
while reducing the model memory footprint by up to 1116×. For
a GPT-2 LLM, using DHE speeds up the prompt prefill by up
to 1.32× and decoding by up to 1.07× over ORAM, depending
on the batch size, with comparable output quality.
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I. INTRODUCTION

Machine learning (ML) models are increasingly deployed
in a wide range of tasks. However, the data required to
train and run ML models can often be sensitive and needs
protection. For example, deep-learning based recommenda-
tion models (DLRMs) [80] are widely used for personal-
ized recommending and ranking items in e-commerce [8],
[133], [134], social media [45], entertainment [129], and
search [15]. DLRM leverages data specific to individual users,
containing the users’ sensitive information. Similarly, large
language models (LLMs) [10], [90], [109] may take poten-
tially sensitive queries. Moreover, ML tasks are both compute
and memory intensive, and ML training and inference tasks
are often deployed on the cloud, where there are concerns
about cyber attacks, malicious service providers, co-located
attackers, etc. As a result, privacy-preserving machine learning
(PPML) techniques have been proposed to protect the ML
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workloads, including cryptography-based schemes [65], [93],
[96], [115] and hardware-based trusted execution environ-
ments (TEEs) [7], [17], [18], [53]. However, the memory
access pattern of the execution is usually not fully protected
in today’s computing systems, leaving the door open for side-
channel attacks.

Meanwhile, ML models have evolved to deal with more data
types. While traditional ML models mainly use continuous
data such as pixel values in images, ML models can also use
non-numerical features that are discrete or categorical, e.g., the
tokens in LLMs and the categorical user features in DLRM.
For ML models to handle discrete features in continuous
vector space, the categorical features need to be converted to
embeddings, which are high-dimension vectors capturing the
semantics of features. Typically, embedding tables are used
to generate (i.e., fetch) embeddings for discrete features, via
simple lookups.

Unfortunately, the use of embedding tables introduces a
memory side-channel vulnerability that can leak the table
index of a query, which represents the value of the feature
in the request. For example, in a language model, if a token
ID is leaked, then the word/subword in an input is leaked. For
DLRM, private user information such as age group, gender,
purchase history may be leaked by tracking the access pattern
to embedding tables [47], [91]. The whitepapers from TEE
hardware manufacturers [56] indicate the software design
should be hardened against side-channels when sensitive data
is involved. While oblivious random access machine (ORAM)
and private information retrieval (PIR) are cryptographic al-
gorithms that can hide access patterns in databases, they often
incur significant performance and memory overheads [92],
[98]. For instance, we evaluate the ORAM overhead on the
embedding lookup latency to be an average of 40× for sparse
features in DLRM, and 200× for LLM prefill with 256 tokens.

In this paper, we aim to enable efficient protection for
embedding generation for categorical/discrete features in ML
models, using DLRM and LLM as case studies. At the model
level, we go beyond embedding tables and study different
methods for embedding generation considering both security
and performance. In particular, recent research proposed Deep
Hash Embedding (DHE) [61], which uses hash functions and
fully-connected layers to generate (i.e. compute) embeddings
at runtime. Without considering security, DHE is compute-
intensive, has longer latency, and thus is only efficient when



memory capacity is the main system bottleneck [50]. But in-
terestingly, DHE directly performs computation on categorical
feature IDs, and its memory access pattern is independent of a
feature value. Thus, DHE is secure against side-channel attacks
on memory access patterns. Our study shows that DHE or a
hybrid scheme based on DHE can provide better performance
and a much smaller memory footprint than traditional embed-
ding lookup with ORAM protection.

We summarize our contributions as follows:
• We demonstrate security vulnerabilities when executing

an ML model with embedding tables on today’s com-
mercial confidential computing platforms, by showing a
side-channel attack in the Intel SGX TEE.

• We study different embedding generation methods to
prevent side-channel attacks on embedding table lookups.
To the best of our knowledge, this paper represents
the first study on secure embedding generation methods
combining both the model architecture and oblivious
computing technologies for confidential computing.

• We analyze the end-to-end security of DLRMs and LLMs
in terms of memory and control flow side-channels. The
protection for embedding generation poses the main chal-
lenge whereas other layers are secure or can be protected
with negligible performance overhead.

• For DLRM, based on our characterization of real
platforms, we propose a hybrid embedding generation
scheme. We observe that a combination of linear scan
and DHE shows the best performance in practice. For
a single DLRM inference, the hybrid scheme shows a
performance improvement of up to 3.08× over a baseline
ORAM scheme, with no accuracy loss, while reducing the
model memory footprint by up to 1116×.

• For LLMs, we propose to use DHE for batched secure
token embedding generation. This paper is the first study
that evaluates DHE for LLMs. Applying DHE to a GPT-2
model and finetuning the model gives perplexity compa-
rable to the original model, with up to 1.32× speed-up
for prefill and up to 1.07× speed-up for decoding with
batching compared to ORAM, and an overhead of only 2–
5% over the non-secure implementation with no memory
side-channel protection.

• The code of our implementation is publicly available at
https://github.com/bearhw/SecEmb DHE.

II. BACKGROUND

A. Neural Networks and Embedding Generation
Deep neural network based ML models use a network of

interconnected nodes (or neurons) and non-linear activations
to process data. Such ML models can effectively process
continuous numerical data (e.g., pixel values) as inputs. These
numerical inputs are often called dense features. However in
certain tasks, ML models also need to process non-numerical
features that are discrete or categorical, e.g., the words in
LLMs and the categorical user features in DLRM. These
categorical features are also called sparse features. Embedding
vectors are introduced to represent categorical features as

Word Tokens

Token Embeddings

Self-Attention

Feed-Forward Network

Next Token

Positional Encoding

Fully-Connected

×N

Dense Features Sparse Features

Bottom 
Fully-Connected

Feature Interaction/Concatenation

Top Fully-Connected

Click Through Rate (CTR) Prediction

Sparse Feature 
Embeddings

(a) DLRM                                              (b) LLM

Fig. 1: ML models with embedding layers.

numerical values. Below are two popular ML sub-fields where
embeddings play an important role.

Deep Learning Recommendation Model (DLRM): DL-
RMs [80] take both dense (i.e., numerical) and sparse (i.e.,
categorical) features as input to predict a match between
a user and an item, such as click-through rate (CTR), as
shown in Figure 1(a). In DLRMs, fully-connected (FC) neural
network layers are used. Sparse (categorical) features cannot
be represented by continuous numbers, e.g., the name of
the items viewed by a user. Sparse features have to be
transformed into embedding vectors. Then, the embedding
vectors and the processed dense features are combined through
feature interaction and further processed by the top FC to
give a recommendation probability. The need to process large
sparse features distinguishes DLRMs from other ML models.
In DLRM, a batch of embedding generation from a single
feature/table spans lookup IDs from multiple user requests.

In DLRMs, there are typically tens to hundreds of sparse
features. Some of the features can contain tens of millions of
entries (the embedding table size). The embedding dimension
for each entry is typically 16, 32, or 64 [43], [45], [50].

Large Language Models (LLM): Transformer-based
LLMs [10], [90], [109] are the most popular models for natural
language processing (NLP) tasks such as semantic search, or
text completion/generation. The general Transformer archi-
tecture takes an input text prompt, which is first converted
into discrete tokens (subwords) by a tokenizer. These cat-
egorical tokens need to be converted into individual token
embeddings to be processed further, as shown in Figure 1(b).
The token embeddings are obtained by looking up a token
embedding table using the token IDs as lookup indices. Then,
a positional encoding is added to token embeddings, and the
sum is processed through many attention and feed-forward
layers. The result can be either used as the prompt’s semantic
representation or in the generative version of the Transformer,
the result is transformed (using an FC layer head) into logits
for the output token. The new token is then fed back as ap-
pended input to generate the next output token, generating text
autoregressively token-by-token until the end of the sentence
token is reached. In this study, we focus on generative Trans-
formers. During generation, there are two stages as described
above: prefill (input prompt processing) and the subsequent
decoding (autoregressive token generation). The prefill stage
accesses possibly multiple token embeddings for the entire
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Fig. 2: Comparison of embedding generation methods in ML
models. mem. refers to memory footprint. The number shows
the normalized performance in DLRM (batch size = 32). The
smaller the better.

input prompt, whereas decoding accesses only one at a time
(for a single inference); these result in different embedding
layer batch sizes. The output FC layer head typically shares
weights with the token embedding table [85] for better quality.

LLMs only have one index-based embedding table (i.e., for
tokens), whereas DLRMs have multiple tables of different
sizes for sparse features. Across different models, the LLM
token embedding table typically has a few tens of thousands of
entries [10], [25], [42], [60], [108]. The embedding dimensions
are typically in the range of 768–8192, much larger than those
in DLRM.

Taxonomy of Embedding Generation Methods: Today,
embedding generation methods usually rely on a table lookup.
Such a storage-based method stores a trained mapping be-
tween a categorical feature value and the corresponding em-
bedding in an embedding table, and the embedding generation
can be done by a table lookup using an index value; see
Figure 2 (1). For DLRMs, the embedding tables in a model
can take gigabytes or even terabytes of memory [50].

More recently, researchers have explored embedding gen-
eration without looking-up huge embedding tables, as large
tables can make the system inefficient due to the high memory
usage. The computation-based method instead uses compute-
heavy encoder-decoder stacks to generate embedding vectors
using the categorical feature value [50], [62]. In Deep Hash
Embedding (DHE), as shown in Figure 2 (2), a parametric
hash function is used to encode the input ID into multiple
values, which are then decoded into an embedding via FC
layers. DHE was previously studied in DLRMs [50], [62],
because embedding generation contributes the majority of the
inference time and model size in DLRM. DHE in DLRM
provides a design option to trade-off latency and memory
footprint. However, DHE is not widely used in practice due
to its computation overhead. Also, DHE has not been studied
for other models such as LLM, because the embedding table
is typically not the bottleneck in models like LLMs.

The table in Figure 2 shows a comparison between the
storage-based method and the computation-based method in
terms of latency and memory footprint. Without considering
security, embedding generation in practice today uses the
storage method [87], because memory lookup is much faster
than computing an embedding at run time, although DHE

takes a smaller memory footprint. However, from the security
perspective, memory lookup is vulnerable to side-channel
attacks, which are expensive to protect using traditional pro-
tection methods such as ORAM. Under security requirements,
in this paper, we show that DHE offers competitive latency
and a much smaller memory footprint than traditional protec-
tion techniques.
CPU vs. GPU: In this study, we focus on CPU platforms.
Because large embedding tables in DLRM often cannot fit
in the limited GPU memory, embedding layers in DLRM
typically rely on CPUs. Recent studies show that the use of
CPU DRAMs for large embedding tables in DLRM instead
of GPU memory can improve performance and reduce the
cost [57], [63], [128]. Even though LLMs are typically trained
and served on GPUs today, there are recent efforts to run
model inference on CPUs as well, given the need to run
LLM in different use-case scenarios and the low cost of CPU
platforms. LLMs on CPUs are becoming more feasible by
leveraging techniques such as quantization and SIMD vector
units across multi-core processors [30], [55].

B. Confidentiality Protection
Confidential Computing uses hardware-based trusted exe-

cution environments (TEEs) [6], [9], [12], [16], [19], [31],
[35], [68], [70], [77], [102]–[104], [118], [123] to provide
confidentiality and integrity protection in the cloud even with
an untrusted OS or from physical attacks. Compared with other
protection using cryptography such as homomorphic encryp-
tion (HE) [93], or secure multi-party computation (MPC) [65],
[96], [115], hardware-based protection has a smaller overhead
and is more practical to deploy real large-scale applications.

Intel’s Software Guard Extension (SGX) [77], the TEE
we use in this work, represents one of the state-of-the-art
TEE designs. SGX establishes a secure environment called
an enclave with a special protected memory region called
the enclave page cache (EPC). SGX protects EPC from all
non-enclave memory accesses (both reads and writes) from
potential software attackers, including accesses from the OS
kernel, the hypervisor, and peripherals, via built-in hardware
isolation mechanisms. To deal with hardware attackers who
can conduct cold-boot attacks or bus probing, the confiden-
tiality of the protected memory region is maintained via data
encryption in the main memory. There are two generations of
memory encryption in SGX. The now obsolete Intel Client
SGX edition provides a maximum of 256 MB protected
memory, due to the costly Merkle-tree based protection for
replay attacks [41]. To scale the size of the protected memory
to the terabyte-range, the recent server TEEs such as Scalable
SGX, AMD SEV [7], and Intel TDX [54] use AES-XTS mode
for memory encryption [29], [52], which however, does not
protect against replay attacks. Thanks to the large size of the
protected memory, we can put the entire DLRM and LLM
inside the secure enclave memory.

In today’s TEEs, side-channel attacks are not prevented by
hardware and are considered as the responsibility of software.
Software needs to be written carefully to avoid side-channel



leakage [56]. Moreover, recent studies show that side-channel
attacks are practical on public clouds [131], [132].
Data-Oblivious Programs are those whose control/data flow
does not depend on the input data [92], [98]. Data-oblivious
programs avoid information leakage through side-channels
such as memory access patterns. Algorithms with data-
dependent memory accesses can be made oblivious by rewrit-
ing them in a deterministic fashion e.g., eliminating data-
dependent branches. Moreover, algorithms can also hide their
memory access patterns via access pattern obfuscation. A
simple example is that on each memory access, the algorithm
touches all memory blocks in memory through a linear scan.
More interestingly, Oblivious RAM (ORAM) [38] hides an
algorithm’s data access pattern via shuffling and re-encrypting
the data on each access, while allowing only a negligible
probability of learning anything useful about the original
access pattern from the obfuscated pattern. Many types of
ORAM schemes have been proposed [49], [101], [107], [113].
In confidential computing platforms, ORAM can be available
either as a hardware component e.g., inside the memory con-
troller or implemented in software. ORAM is not yet available
in today’s TEE hardware. As a result, software protection is
necessary for full protection when memory access patterns
may contain confidential information.

C. Side-channel Attacks on ML Models
Previous studies have shown that side-channel attacks can

be applied to ML models. For example, memory access
patterns during ML inference can be used to infer the model
architecture [51], [122] and model parameter values when the
memory accesses are optimized with dynamic pruning [51].
In some implementations, the memory access patterns may
also leak output labels [5], [106]. These studies demonstrated
the potential risk of side-channel attacks on ML and led to
follow-up studies on potential protection techniques including
oblivious computing [14], [74], [81], [106]. However, the pre-
vious studies on ML side-channels largely focused on the ML
models without embedding tables, such as FC or convolutional
neural networks. In this work, we experimentally demonstrate
that microarchitectural side-channel attacks indeed pose a
realistic threat for embedding table accesses in ML models,
and develop an effective oblivious computing technique for
embedding generation.

III. THREAT MODEL

This paper aims to enable efficient protection in machine
learning (ML) models from memory access and control flow
side-channel attacks, especially the embedding generation
layer. In today’s table-based embedding generation, memory
access patterns leak sparse feature values that are used as table
indices directly. Our goal is to hide the sparse feature values
(embedding table indices). The proposed secure embedding
generation enables protecting the confidentiality of input val-
ues (user and item features, or language tokens), intermediate
states, and outputs. We assume that the frequency of inference
requests, the number of sparse features accessed, or the model
architecture do not need to be hidden.

We assume that the ML workload runs inside a protected
execution environment, where attackers cannot access the
memory space of the victim ML workload directly, e.g., a
hardware-based TEE, a virtual machine (VM), or a software
container. However, information leakage is possible due to the
side-channel in the memory access pattern or control flow.
Memory side-channel attacks have been demonstrated to be
practical and powerful attacks on the cloud in CPU [73],
[86], [131], [132], on-chip and off-chip GPUs and accelera-
tors [27], [28], [79], [126]. We do not consider physical side-
channel attacks such as the power and electromagnetic side-
channels. We also assume protection against floating-point
side-channels [66] as orthogonal to our work.

As a concrete example, this paper implements and evaluates
the side-channel protection for DLRM/LLM models running
inside an Intel SGX enclave. In LLMs, we assume that the
tokenization’s encoding and decoding processes between nat-
ural language tokens and their token IDs happen on a trusted
local device and not in an untrusted cloud. The tokenizer is
typically open-sourced, even in proprietary models [39], [82],
to enable users to calculate the token count for their prompts
and estimate the resulting API usage cost.
A. Information Leakage through Embedding Table Accesses.
(1) Sensitive information that can be inferred from the
indices. Embedding table accesses or indices contain a user’s
private data and accesses to sparse feature tables in DLRM
may reveal sensitive user data [47], [91], such as their gender,
education level, living city, etc. For instance, the Taobao
Ads dataset [105] has many tables describing private user
features; the gender table with 2 entries has indices 0 and 1
corresponding to Male and Female respectively. In LLMs, the
user input prompt is converted to token IDs which are used
to index the token embedding table, and hence can directly
reveal which tokens the user prompt contains. The tokens can
be used to reverse-engineer sensitive information in the prompt
or the generated text.

This type of memory access pattern attack leaks sensitive
input values more directly than other attacks on ML models,
such as those involving building statistical models on data-
dependent access patterns (e.g., ReLU activation) of CNN
models to guess the output class for an input image [106].
(2) Leaking indices through side-channels. Memory access
patterns can be leaked via a number of different channels,
including cache [73], [131], [132], page faults [121], memory
bus [24], and memory row buffer [84]. In the practical datasets
we studied, an embedding table entry is always bigger than
one cache line, and cache line granularity attack is accurate
enough to leak the indices.

Here, we demonstrate how the attacker can obtain the
target/victim index to an embedding table for a baseline
DLRM implementation on Intel SGX via a side-channel attack
in the last-level cache. We implemented an embedding layer in
C++ and ran it in the Intel SGX enclave on an Intel Ice Lake
Xeon CPU. Our prototype assumes the attacker can pinpoint
the starting of embedding access by using the starting of the
enclave ecall, given that the embedding is the first layer in the
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Fig. 3: Access latency of the eviction set observed by the
attacker. Here, the actual victim index is 2, and the attacker
observes a longer latency for eviction set 2. In DLRM, the
index may represent the item ID of a user’s recent purchase.

model. The table we tested has 256 entries with an embedding
dimension of 64, which represents a small-medium table in
the Kaggle or Terabyte datasets [21], [59]. While the enclave
program is running on one of the cores on the server processor,
the attacker can run processes on a different core on the same
processor, allowing the attacker to make memory accesses to
the shared last-level cache (LLC) and observe the memory
access latency. The attack has two phases. Phase (i) is creating
the eviction set for each index. We let the attacker be one of
the users of DLRM and query indices in the embedding table
to help create the eviction set for each index. We adopt the
PRIME+SCOPE attack [86] to the Intel SGX enclave program.
In this demonstration, we use the physical address of the
embedding table to accelerate the construction of the eviction
set. This assumption is also used in other cache side-channel
attacks on Intel SGX where a malicious OS can find out
the physical address [112]. Phase (ii) is to measure the time
for accessing the eviction set. We iterate through each cache
set to infer the victim index. Figure 3 shows the results of
our attack, each data point in the figure is an average of 10
measurements. The attacker can learn the victim index through
timing measurements. Although we have a larger table, we
only prime 25 cache sets to demonstrate the feasibility of such
an attack in the cache.

In addition to cache side-channel attacks, the table lookup
index can be directly leaked if the attacker can see the memory
traffic on the memory bus. The indices can also be leaked in
attacks using page faults [121]. The OS can reset the present
bits of embedding table memory so that every table lookup
triggers a page fault. Then, the OS can observe the page-level
access patterns. The enclave program’s access pattern can also
be leaked through the timing of TLB, DRAM row buffer [84],
and a combination of cache and DRAM channels [112]. Each
of the attacks will leak the index with different granularity. A
combination of the attacks can scale the attack to leak the exact
indices of a large table. For example, page fault or DRAM row
buffer can leak coarse-grand address, and cache side-channel
can leak the indices within page or DRAM row granularity.

IV. SECURE EMBEDDING GENERATION

In this section, we first study techniques for secure embed-
ding generation against side-channel attacks, either by hiding
the index used to look up a table, or by deterministically
computing the embedding without a table lookup. Then, based

on their performance, we analyze how to make best use of
these techniques (possibly in a hybrid manner) for secure and
efficient DLRM and LLM designs. While we target secure
inference, our analysis can be adapted to training as well.

A. Techniques for Secure Embedding Generation

1) Embedding Tables protected by Linear Scan: When
using the original table representation of embeddings, i.e., a
storage method, we can use a linear scan to hide the lookup
index. Linear scan is a naı̈ve algorithm that scans the entire
table for looking up a single index. It has the complexity of
O(n) where n is the number of table rows, which is clearly
prohibitive for large tables.

2) Embedding Tables protected by Tree-based ORAM:
When using the table storage representation, we can apply
Oblivious RAM (ORAM) for better scalability in large tables.
The standard tree-based ORAM approaches cleverly organize
the protected table memory into a tree structure. We consider
two tree-based ORAM approaches in this paper:

Path ORAM [101]: A simple ORAM scheme that organizes
data into a tree of node buckets, each having Z data blocks. In
addition to the tree, Path ORAM has two more data structures:
the position map (pos-map) that associates each data block
to a tree leaf, and a stash to store data blocks locally. Path
ORAM maintains the invariant that data either resides in the
stash or on a path on the tree to its assigned leaf. On a data
access, the pos-map is looked up for the corresponding leaf,
and that path from the tree is fetched to the stash, and the
desired block is returned. The block is assigned a new random
leaf in the pos-map. The fetched path is then written back to
memory by pushing valid blocks in the stash to the path as
deep as possible.

Circuit ORAM [113]: It is also a tree-based ORAM, similar
to Path ORAM up to fetching the read path. It differs from Path
ORAM in how it inserts blocks from the fetched path into the
stash, and how it evicts blocks from stash. Unlike Path ORAM,
it does not insert the entire path into the stash, but only the
relevant block. Moreover, for eviction, it does not iterate over
the entire stash repeatedly for each bucket in a path to build the
evicted path (for hiding the memory access pattern in oblivious
computing in a software-based ORAM controller), but only
runs through the stash once by preparing metadata in advance
to select appropriate blocks to push into the evicted path. For
eviction, Circuit ORAM incurs additional bandwith overhead
by fetching two more paths. However, Circuit ORAM works
with a much smaller stash than Path ORAM (15× smaller in
our setup). As such, the number of instructions/iterations in
Circuit ORAM are reduced, and it is better suited to oblivious
computing. We refer readers to literature for details on Circuit
ORAM [49], [98], [113].

For embedding tables, a per-table ORAM is instantiated.
However, embedding tables in DLRM can grow to millions of
entries, and using tree-based ORAM techniques for such tables
is still expensive, since they lead to a blow-up in bandwidth,
and require multiple memory accesses for a single embedding



Algorithm 1: Deep Hash Embedding (DHE) (see [61])
Input: categorical feature value x
Output: an embedding vector
Step 1: encode x into k different values by using k universal

hashing functions [11] i.e., calculate yk = (((akx+bk)
mod pk) mod m) where a,b,m, p are integers and m gives
the hash bucket size (we have m = 106)

Step 2: uniformly transform the integer values yk into real
values in the range [–1, 1]

Step 3: decode/transform the k-long vector y using FC layers
to give an embedding vector

lookup. The tree organization in ORAM requires additional
dummy blocks and incurs a large memory space overhead.

3) Deep Hash Embedding (DHE): DHE [61] is an alter-
native computation-based method for embedding generation,
as opposed to storage-based methods. DHE first encodes the
input feature or index using a series of hash functions, and then
decodes the resulting values by passing them together through
a fully-connected (FC) network to give an embedding vector.
Whereas DHE was originally proposed as a compute-based
alternative to lookup-based table storage as a way to reduce
the memory footprint and bandwidth usage, we propose to
use it as a secure embedding generation technique since its
memory access patterns are deterministic and do not depend
on the input categorical feature value. Algorithm 1 summarizes
the DHE-based embedding calculation (details in [61]). The
number of hash functions k and the proportionately large FC
sizes in the DHE encoding stage greatly affect the quality of
the generated embedding and hence the accuracy of the end-
to-end model. In this paper, we setup DHE models to match
the baseline table representation’s accuracy.
Comparison: Table I summarizes the complexity and the
model accuracy of the different secure embedding generation
methods. The computation complexity here is for a single
embedding generation. The embedding table (storage-based)
with protection applied does not scale well with the table size.
The performance of DHE depends on k, assuming the DHE
FC size is proportional to k. Note that k ≪ N.

B. Performance Characterisation of Secure Embedding Gen-
eration Techniques

We implement, optimize, and deploy the three techniques
described above in Intel SGX, considering security and per-
formance, with implementation and optimization details in
Sections V and VI-A. We measured the latency for processing
one batch of embedding generation using each aforementioned
technique.

TABLE I: Comparison of secure embedding generation meth-
ods. n is the table size; k is the no. of hash functions in DHE.

Computation
Complexity

Memory Space
Complexity

Model
Accuracy

Table: Linear Scan O(n) O(n) no loss
Table: ORAM O(log2 n) O(n) no loss
DHE O(k2) O(k2) sized for no loss
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Fig. 4: Latency of the secure embedding generation techniques
for different table sizes in DLRM (batch size = 32, 1 thread).

1) DLRM: We first study the embedding generation in
DLRM. DLRM typically has a large number of embedding
tables with different table sizes. Figure 4 shows the latency
for different table sizes with fixed embedding dimensions of
16 and 64, in a single-threaded configuration with a batch size
of 32. The evaluated DHE has k=1024 and a 3-layer FC.

Figure 4 shows that the optimal embedding generation
technique in terms of latency is different for different table
sizes for the two commonly used embedding dimensions. DHE
has a constant cost independent of the table size, whereas the
latency of linear scan and tree-based ORAM grows with the
size of the table. Specifically, linear scan and Path ORAM
become impractical for very large table sizes. Circuit ORAM is
the fastest among the traditional oblivious computing schemes
for large embedding table lookups, yet incurs a large latency.

We further optimize the DHE scheme by varying the DHE
size (k and FC sizes) for different table sizes. Hence, we have
two DHE schemes: Uniform, where the DHE model architec-
ture is fixed for all tables, and Varied, where smaller tables
can use smaller DHE models. The intuition behind Varied
is that smaller table sizes need less powerful or expressive
DHE models to generate embeddings and hence we do not
necessarily need fix sized DHE for all tables. For the Varied
DHE, we explored a few heuristic ways to change the DHE
size, e.g., scaling down by 2 for every order of magnitude
decrease in the table size, or scaling down linearly. We found
the latter to match the baseline table model accuracy and
thus adopted the linear scaling down approach for DHE sizes.
It is possible to do a more exhaustive search for an even
better parameter scaling down approach to optimize the DHE
sizes for each table. Figure 4 shows that Varied DHE has a
significantly smaller latency than the Uniform DHE depending
on the table size.

Figure 4 shows that for small table sizes, linear scan is
better than DHE and even tree-based ORAMs. This is because
scanning a small range of indices is faster than executing the
compute stacks in DHE or performing an ORAM access by
reading/evicting a tree path. The figure suggests that a single
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Fig. 5: LLM embedding generation latency vs. embedding di-
mension, for various batch sizes, for a fixed table (vocabulary)
size of 50257.

technique cannot provide optimal latency for all embedding
table sizes, and there is an opportunity for a hybrid embedding
generation approach for better performance. Morever, the
techniques differ in metrics other than latency e.g., DHE has
a much smaller memory footprint than a large embedding
table, and so more DHE layers can fit into the memory of a
given confidential computing system than raw tables, or tables
protected by ORAM.

2) LLM: We also study these secure embedding generation
techniques for Transformer-based LLMs. Figure 5 shows the
trend of the token embedding latency for various embed-
ding generation techniques, as the embedding dimension is
changed, for a fixed vocabulary size of 50257 (as in GPT-
2). We show different embedding generation batch sizes. An
embedding generation batch size depends on the input query
batch size and the LLM processing stage. The prefill stage will
typically have larger batch sizes as it processes multiple token
embeddings at once, whereas the decoding stage processes
one token at a time. We use 16 threads for inference. The
DHE is sized to match the baseline model perplexity (quality).
For large batch sizes (e.g., prefilling input prompts), DHE
performs best in terms of latency; for lower batch sizes (e.g.,
the decoding stage), the best technique is either DHE or
Circuit ORAM depending on the exact batch size and also
the embedding dimension i.e., the LLM model architecture.
This points to a potential of using dual representation of the
embedding table for best latency.

C. Hybrid Scheme for DLRM

DLRMs have many embedding tables of different sizes, and
as shown in Figure 4, each table size is suited to different
secure embedding generation techniques in terms of latency.
We propose a hybrid protection scheme for DLRM in order
to improve the model latency and throughput while ensuring
security. For DLRM, either linear scan or DHE is the best-
performing technique for any table size. We now describe
how to allocate either linear scan or DHE to a given DLRM
sparse feature for optimal performance, first considering a
single model for latency and then later discussing co-located
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models for both latency and throughput. We use the term DHE
to refer to both the Uniform and Varied variants.

1) Optimizing Latency for a Single DLRM Inference:
We propose Algorithm 2 to minimize the latency of a single
model on a machine, by selecting the best embedding gen-
eration technique for individual features. In our experiments,
we consider DLRM model execution with sequential sparse
feature processing.

Offline Profiling: The goal of profiling is to determine the
performance of linear scan and DHE for different table (sparse
feature) sizes on a given system, and find the threshold that
determines which embedding generation technique to use:
table sizes below this threshold use linear scan, and DHE
otherwise. Here, we show the example profiling in our system
(Section VI-A). We profile the latency for each technique
across different table sizes with different execution configu-
rations including batch sizes and CPU thread counts. For each
profiled configuration, we plot the latency vs. table size curve
for each of linear scan and DHE like in Figure 4(b), and take
the point of intersection of the two curves to be the threshold
between linear scan and DHE. Figure 6 shows the distribution
of switching thresholds, for linear scan and DHE Uniform.
The thresholds decrease as the batch size increases because
DHE has better temporal locality and batch parallelism. On the
other hand, as the number of threads increase, the linear scan
improves its cache reuse of the table across several queries
in multiple threads, so the thresholds increase. The profiling

Algorithm 2: Optimize DLRM Single-Model Latency
Offline:
1. Profile latencies with a given execution configuration to

find (the range of) table (sparse feature) size thresholds for
allocating either linear scan or DHE.

2. Convert the DHE representation of all below-threshold
sparse features to a table, to be used by linear scan as
required.

Online: Use the profiled thresholds at runtime to allocate the
embedding generation technique (linear scan or DHE)
based on the table (sparse feature) size and execution
configuration, to achieve the best model latency.



Algorithm 3: Hybrid DLRM: Dynamic Scheduling
Func ScheduleDLRMTables (BatchSize, ThreadCount):

CurrThreshold = Thresholds[BatchSize][ThreadCount];
For each table T in the DLRM model:

If TableSize(T ) ≤ CurrThreshold: Assign T to LS
If TableSize(T ) > CurrThreshold: Assign T to DHE

stage is of low effort and it can be completed in a few hours.
It is done once per system for each embedding dimension.

The red points in Figure 7 show the DLRM tables in Kaggle
and Terabyte datasets that can be allocated to either linear
scan or DHE (Uniform). The tables/features below this (red-
colored) range are always allocated to linear scan, and above
always to DHE. For Kaggle and Terabyte, 7 and 9 out of a
total of 26 tables (99.7% in terms of memory footprint of
the table representation) will always benefit from the DHE
format, respectively. The red features (3 tables for Kaggle and
6 tables for Terabyte) can choose to use linear scan or DHE
dynamically depending on the configuration.

Offline Hybrid Model Training and Preparation: The profil-
ing shows that the red features in Figure 7 can potentially ei-
ther use linear scan of the embedding table or DHE at runtime,
and hence inference needs access to a model that supports
both. Naı̈vely, we can train separate end-to-end models for
each execution configuration’s threshold split. However, that
would require extensive training time, and also increase the
memory footprint. Instead, we propose to train a model with
all sparse features in DHEs, and then use the trained DHEs to
create table representations which store the DHEs’ outputs for
all valid inputs. If linear scan is faster than DHE for a given
configuration, the table generated from trained DHE will be
used. In this way, the model can be easily adapted to many
system configurations without retraining.

Online Deployment: At inference time, the model including
the hybrid table representations is loaded into memory. Based
on the current execution configuration, we use the threshold
from the profiling to choose the embedding generation tech-
nique for each feature. Then, each sparse feature is processed
by either linear scan or DHE based on the table size. Algo-
rithm 3 summarizes the online decision.

2) Optimizing Throughput for Co-located DLRMs:
Typical data-centers may run many co-located models in
parallel on the same system, to achieve high system throughput
and high server utilization. The throughput of DLRM inference
can be calculated as 1/Latency × Batch Size × Number of
Co-located Models. Meanwhile co-locating models can cause
resource contention and interference among models, in terms
of computation resources, caches, and memory bandwidth.
Figure 8 shows the latency increase caused by co-locating
multiple copies of a synthetic table that only uses one type
of secure embedding generation technique. As a result, the
threshold to determine the embedding generation technique
may change in the case of co-location.

We study the effect of co-locating varying proportions of
linear scan and DHE for embedding generation techniques
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on total fixed N = 24 cores, across a variety of embedding
table sizes. Figure 9 shows the embedding layer latency for
embedding vector dimension 64, and one execution config-
uration (batch size 32, 1 thread). For smaller table sizes,
allocating all tables as a linear scan gives the lowest latency
(0 on the x-axis); but for larger table sizes (beyond 4500),
DHE gives the best latency (24 on the x-axis). The co-located
switching threshold of 4500 is close to the original single-
model threshold of 3300 as shown in Figure 6 for batch
size 32 and one thread. We generally observe that when
all cores are assigned to the same embedding generation
technique, the single-model threshold is still close to that
for co-located models. Moreover, co-located models may be
running differently sized sparse features and even some FC
layers in parallel to ease the contention. Given the small
potential benefit and the cost of optimization, we suggest
using the single-model thresholds for deciding the embedding
generation method even for co-located models.

3) Training / Deployment: So far, we discussed how to
optimize the inference latency of secure DLRM by using a
hybrid approach for embedding generation. To deploy such
models, we need to first train DHE Uniform models to search
DHE parameters that can match or exceed the baseline table
accuracy on our dataset. Then we can optionally further
optimize DHE sizes by training more models with DHE
sizes that vary with table sizes. Thereafter, we can apply
Algorithm 2 for inference. Because DHE has a deterministic
access pattern in both forward and backward passes during
training, the proposed all-DHE training should also be secure.

D. Hybrid Scheme for LLM

As shown in Figure 5, for a given LLM embedding di-
mension, either DHE or Circuit ORAM is the most favorable
for latency of secure embedding generation, depending on the
exact embedding generation batch size. Typically, only the
decoding stage in LLMs will favor Circuit ORAM due to small
batch sizes. We can choose to use either one dynamically by
generating a table for ORAM from the outputs of a DHE-based
embedding layer. Note that the memory overhead of ORAM



for a single embedding table may be high relative to the rest
of the LLM model, especially for smaller language models.

In our LLM experiments, we fix the thread count as 16,
and evaluate both DHE and Circuit ORAM for different batch
sizes in the LLM prefill and decoding stages.

V. SECURITY: IMPLEMENTATION AND ANALYSIS

A. Implementation of Embedding Generation Methods

Here, we describe our implementations of embedding gen-
eration methods, which avoid data-dependent memory access
patterns and control flow that may lead to side-channel attacks.
Our implementation uses Intel’s Scalable SGX [53], first
offered in the 3rd generation Ice Lake Xeon server processors.
However, our choice of TEE does not specialize our design,
and our approach can be adapted to other protected execution
environments.

1) Tree-based ORAM: We adapted the open-source im-
plementation in ZeroTrace [98], which has software-based
Path ORAM and Circuit ORAM controllers, and uses data-
oblivious functions (e.g. predicated execution using the con-
ditional register–register cmov instruction) for implementing
ORAM operations such as pos-map lookup to harden it
against software side-channels such as cache-timing attacks.
ZeroTrace was developed for the now obsolete Intel Client
SGX edition, with a small 256 MB EPC memory for the
enclave. Since Scalable SGX offers a large EPC memory
(64 GB), we modified the ORAM controllers to include the
entire memory inside the enclave using Gramine [40] to
reduce context switches during execution and achieve better
performance. As shown in Figure 10, including the whole
ORAM tree in EPC (ZT–Gramine) reduces the average latency
of the original ZeroTrace (ZT–Original) by 20% for Path
ORAM and 60% for Circuit ORAM. We further optimize
the implementation via enabling recursion by fixing bugs and
inlining the cmov assembly function calls (ZT–Gramine–Opt),
to achieve an additional latency reduction of 29% for Path
ORAM and 54% for Circuit ORAM, on average for the table
sizes shown in the figure. We make our best effort to optimize
the ORAM implementation and use this optimized version for
our evaluation.

For protecting an embedding table using ORAM, we match
the ORAM block size to the embedding vector dimension. The
bucket size of Z = 4 blocks, and stash sizes of 150 and 10 for
Path ORAM and Circuit ORAM respectively are set according
to previous work [98]. We enable recursion after 212 blocks for
Circuit ORAM, and 216 blocks for Path ORAM, to empirically
obtain the lowest latency. The pos-map tree reduction at each
recursion level is 16×. Processing each item in the input
batch is sequential since the internal ORAM structures must
be updated sequentially and parallelism is not possible.

2) Linear Scan of Table: A linear scan of the entire table
to retrieve an embedding hides the desired index. However,
to avoid side-channels, we must make its implementation
constant-time and also consider its data writing pattern to
registers or memory. In the linear scan algorithm, there is
an output tensor buffer to which the desired embedding from
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embedding dimension 64.

the table is copied obliviously as the table is scanned. We
develop an efficient linear scan using AVX-512. We scan the
entire embedding table for each input index in a batch, and
obliviously set a flag to 1 once the desired row is reached. We
expand the flag into an AVX bit-mask, and use an AVX blend
instruction to obliviously copy the embedding from the table to
the output buffer via AVX registers. When the embedding size
is not a multiple of the AVX vector size, the left-over elements
can use masked AVX loads/stores. This approach avoids using
any data-dependent code branches.

3) Deep Hash Embedding (DHE): DHE consists of a sim-
ple hashing and scaling function, followed by fully-connected
(FC) layers. The hashing function ((ax+ b) mod m) mod p
is implemented in a deterministic way: as an outer product,
followed by element-wise addition and modulus operations.
The transformation to real numbers is a simple scaling op-
eration. The DHE FC layers consist of dense matrix mul-
tiplications and activation functions. For a given size, the
dense matrix multiplications are by nature deterministic in
terms of control/data flow. The activation function used is
ReLU [3], which, in a scalar implementation, has a conditional
branch that clamps the activation value to a minimum of zero.
Deep learning libraries, such as PyTorch [83] that we use,
typically harness vector/SIMD instructions to perform such
operations e.g. ReLU(x)=max(0,x). This has no branches
as a hardware intrinsic, and hence is secure. We provide a
proof-of-concept secure ReLU implementation that uses AVX-
512.

B. Security Analysis

Table II summarizes how our embedding generation imple-
mentations are secured against different side-channels. Each
column shows a signal that may depend on the secret. The

TABLE II: Security of embedding generation techniques.
Secret-dependent

Data Access
Secret-dependent

Control Flow
Potential
Attacks

cache/memory side-channel;
page fault controlled-channel

frontend/i-cache
side-channel

Table: non-secure not protected N/A*
Table: ORAM ORAM, linear scan cmov

Pr
ot

ec
te

d

Table: Linear Scan linear scan branchless AVX
DHE (hash) N/A N/A
DHE (FC) N/A branchless AVX (ReLU)

* N/A means such a code pattern does not exist. Thus, it is secure.



second row shows how such signals can be leaked through
practical side-channel attacks in TEEs. The content in Rows
4-7 show how our secure implementations protect the leakage
source, where applicable.
Obfuscating Data Flow: To conceal input-dependent data
access patterns existing in the table embedding representation,
we use ORAM or linear scan. Note that the algorithmic se-
curity of ORAM (memory trace indistinguishablility) is well-
established [101], [113], and linear scan is secure by definition
as it touches all memory elements for each access. The
software ORAM controller also uses linear scan for its internal
structures including position map and stash, like in [98]. On
the other hand, DHE performs the same computation for all
inputs, and does not have input-dependent data access patterns.
Obfuscating Control Flow: To create constant-time algo-
rithms without secret-dependent control flow, we use cmov
and AVX instructions instead of conditional branches. Using
cmov to replace branches with predicated execution is secure,
as it operates at a register level and does not touch DRAM
(see detailed analysis in §5.2 of [92]). Using AVX is secure
for replacing code branches, since as a SIMD ISA, it performs
optional computation and data movement on certain vector
elements via mask predicates, and is inherently branchless.
Orthogonal to these defenses, we remark that mathematical
operations such as matrix multiplication and element-wise
transformations (e.g. multiplicative scaling) have control flows
independent of inputs by nature, and for a given input shape,
follow deterministic code-paths in ML frameworks such as
PyTorch [83].
Security of the Hybrid Scheme: The DLRM hybrid scheme
consists of linear scan and DHE, both of which have been
shown to be individually secure in theory and implementation
above. As long as the decision to choose the technique that
gives the lowest latency for a given sparse feature is indepen-
dent of user inputs, the hybrid scheme should have the same
security guarantees as the constituent techniques. The system-
level decision to choose the embedding generation technique
for each sparse feature in a DLRM model only depends on the
system execution configuration (batch size and thread count in
our setup), as shown in Algorithm 3. The decision is unaffected
by user input/output/intermediate values of the model; hence,
the hybrid scheme does not leak information about the input.
Similarly, the decision to choose DHE or Circuit ORAM in
LLM generation depends on only the embedding generation
batch size, which in turn depends on the inference query batch
size, LLM stage (prefill or decoding) and token counts, none
of which we hide in our threat model. Note that unlike DLRM,
we fix the thread count in our LLM experiments.

C. End-to-End Protection of the Whole ML Model

This work focuses on protecting embedding generation
from side-channel attacks. However, for enabling end-to-end
protection, we also need to secure the data-dependent memory
access patterns, if any, in other layers.

DLRMs, as shown in Figure 1, have standalone FC layers
(bottom & top), which have a deterministic memory access

pattern except for the activation layers (i.e., ReLU, which we
secured). The final click probability is obtained via sigmoid
which is a mathematical deterministic operation. The interac-
tion layer is deterministic as it is either the concatenation or
an all-to-all inner product of the dense and sparse embeddings.

In LLMs, beyond the token embedding generation, there
are layers of FC, attention, and normalization layers, all
of which have deterministic data and control flow. Some
of these other layers have interspersed activation functions
like SoftMax and GeLU [48], which involve deterministic
mathematical operations and are oblivious. During greedy
sampling in generation, the search over the output logits to
determine the most probable token (argmax) can be written
as a linear scan that copies the maximum value obliviously
using cmov. While there are functions such as causal attention
masking that depend on the prompt length, we do not aim to
hide the length.

The overhead of securing layers other than embedding
generation is small, e.g., the overhead of securing argmax
in LLMs is less than 0.4% of the total generation latency. On
the other hand, securing embedding generation is clearly the
biggest challenge for end-to-end protection, as naı̈ve protection
with traditional methods can lead to performance and memory
overheads, especially for DLRMs. As we will show in the
evaluation, our secure embedding generation method based on
DHE enables practical and efficient end-to-end side-channel
protection for both DLRM and LLM.

VI. EVALUATION

A. Methodology

1) System Setup: We run our experiments on a server-class
processor, detailed in Table III. We are limited to 64 GB
memory in our TEE setup, but Scalable SGX can support up
to 1 TB secure memory via dual sockets.

TABLE III: System Configuration.

Processor Intel Xeon Gold 6348, Ice Lake,
3.50 GHz, 28 Cores 56 Threads

SIMD up to AVX-512
Cache 42 MB LLC, non-inclusive

DRAM DDR4-3200 128 GB, 8 channels
TEE Intel Scalable SGX, EPC Size 64 GB

We use PyTorch 2.0 [83], for inference and training. We
adapt existing implementations for DLRM [80], LLMs i.e.,
HuggingFace [120], and DHE [50]. We implement linear
scan and tree-based ORAM, based on ZeroTrace [98], as
C++ extensions to PyTorch using pybind [58]. Thus, for all
techniques, we are able to run an end-to-end inference using
the PyTorch framework. To port our inference flow to the TEE,
we use Gramine [40], a lightweight library OS that enables the
execution of unmodified Linux binaries inside SGX.

2) DLRM: Model Architecture and Datasets: Table IV
shows the details of the Criteo datasets and the corresponding
models we use, inspired from prior work [50]. For DHE
Varied, the DHE sizes are scaled down .125× for every order
of magnitude decrease in the table size, starting from 1e7.



TABLE IV: DLRM datasets and model information.

Dataset Dense
Feat.

Sparse
Feat.

Emb.
Size

FC Bottom
& Top Sizes

DHE (Uniform)
Parameters

Criteo
Kaggle [59] 13 26 16 512-256-64-16

512-256-1
k = 1024
FC: 512-256-16

Criteo
Terabyte [21] 13 26 64 512-256-64

512-512-256-1
k = 1024
FC: 512-256-64

Beyond these Criteo datasets, we also analyze the perfor-
mance of a DLRM model whose sizes are based on an open-
source DLRM dataset [78] released by Meta, which contains
synthetic embedding lookup traces that mimic real production
data. We use the 2022 traces to determine the sizes of 788
sparse embedding feature tables, which go up to 4e7 entries
(unlike Criteo which only go up to 1e7).
Metrics: We evaluate and compare the proposed hybrid scheme
for DLRM to homogeneously secure models (based on a single
secure technique, DHE or traditional memory protection),
via the metrics of model accuracy, model size (i.e. memory
footprint), and performance (i.e. model latency). We also
analyze the system-level throughput of co-located models.

3) LLM: Model Architecture and Datasets: We use GPT-
2 medium [90], a 355M-parameter model with an internal
embedding dimension of 1024, and a vocabulary (embedding
table) size of 50257. Instead of training a DHE-based model
from scratch, we finetune the pretrained model over the
OpenWebText dataset [37]. The DHE we use has 4 FC layers,
and both the internal FC sizes and k are twice the embedding
dimension i.e. 2×1024=2048 for GPT-2 medium.
Metrics: We study standard LLM performance metrics i.e. the
prefill latency or the time to first token (TTFT), the decode
latency or the time between tokens (TBT), the decoding
throughput (tokens/s), and the end-to-end generation latency.
For comparing the model quality, we use perplexity, which
measures the confidence a model has in its predictions. We
also study the overhead in memory footprint i.e. model size,
due to introducing secure embedding generation in LLMs.

B. DLRM Results on Criteo Datasets

Throughout this section, unless otherwise stated, the per-
formance results are based on an execution configuration of 1
thread per model and a batch size of 32.

1) Accuracy: We first trained DLRMs using the table
embedding representation to obtain the baseline accuracy (i.e.
that of the linear scan or tree-based ORAM). We then trained
the whole DLRM with DHE layers with the goal of matching
the baseline accuracy. The attainable accuracy depends on the
number of hashes in DHE i.e. the k parameter, and the DHE
FC sizes, but both also impact the latency. Prior work from
industry [2], [44] states that even small accuracy degradations
are undesirable due to their real-world impact. Table V shows
the accuracy achieved for the baseline table and both DHE
versions described earlier: Uniform and Varied. With proper
DHE hyperparameters, the accuracy of the DLRM with
DHE matches that of embedding tables.

2) Memory Footprint: We approximate the memory foot-
print of the non-secure baseline, and the secure embedding

TABLE V: DLRM Model Accuracies.
Table DHE Uniform DHE Varied

Kaggle 78.82% 78.82% 78.82%
Terabyte 80.96% 80.97% 80.96%

TABLE VI: DLRM model memory footprint for various
techniques. Memory size relative to table (⊚) representation
is shown.

Model Memory Footprint (MB)
Kaggle Terabyte

Table 2062.7 (⊚) 11999.2 (⊚)
Tree-ORAM 6903.6 (327.4%) 40421.4 (336.9%)

DHE Uniform 68.2 (3.31%) 73.0 (0.61%)
DHE Varied 33.4 (1.62%) 40.5 (0.34%)

Hybrid Uniform 26.9 (1.30%) 45.6 (0.38%)
Hybrid Varied 24.9 (1.20%) 36.2 (0.30%)

generation techniques, by considering the model size; see
Table VI. The DHE and hybrid models are orders of
magnitude smaller than the table/ORAM-based baseline
models. Given the small size of the hybrid models, the TEE
secure memory can hold thousands of such models; whereas
TEE memory capacity will fall short for multiple table-based
models. The tables represented as Tree-ORAM are even larger
(more than 3×) due to the tree having dummy blocks, and
the pos-map auxiliary structure having its own trees due to
recursion. The Path and Circuit ORAM models have negligible
difference in memory. Relative to Tree-ORAM, the DHE/Hy-
brid variants occupy between 101− 278× less memory for
Kaggle, and 554−1116× less memory for Terabyte.

3) Single Model Latency: In Section IV-C1, we described
our scheme based on profiling and obtaining thresholds using
small benchmarks. We first aim to verify the effectiveness of
the profiled thresholds for real datasets. At each of our selected
execution configurations, we sweep across many threshold
values and observe the end-to-end latency of the model. We
compare the allocation for the empirically achieved lowest
latency to that suggested by the profiled database. Analyzing
the Hybrid Varied model, we observe that profiled database is
near-optimal (threshold is incorrect by maximum ±1 table) for
88% of our execution configurations for Kaggle, and 84% for
Terabyte, despite execution noise. This shows that the profiled
database for a single table gives near-optimal latency with
real datasets having multiple tables, over many execution
configurations. Figure 11 shows the sweep over thresholds
in one particular execution configuration of the Hybrid Varied
model. In this case, the profiling-suggested and best-empirical
table allocation were an exact match.

We show the end-to-end inference latency under the dif-
ferent protection techniques, in Table VII. The index-lookup
baseline has a small latency but is not secure. Securing the
DLRM via purely linear scan increases the latency from mil-
liseconds to the seconds range. From the tree-based ORAMs,
Circuit ORAM performs much better than Path ORAM, as also
shown in Section IV-B1. As such, Circuit ORAM is our most
competitive baseline. We now look at the latencies for DHE
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TABLE VII: DLRM end-to-end model latencies. Speed-ups or
slow-downs relative to Circuit ORAM (⋄) are indicated (↑, ↓).

End-to-end Latency (ms)
Kaggle Terabyte

Index Lookup (non-secure) 1.58 2.02
Linear Scan 7970.6 44996.4
Path ORAM 323.1 761.9

Circuit ORAM 23.9 (⋄) 39.9 (⋄)
DHE Uniform 29.4 (0.81× ↓) 30.7 (1.30× ↑)
DHE Varied 17.4 (1.37× ↑) 20.0 (1.99× ↑)

Hybrid Uniform 13.2 (1.82× ↑) 21.1 (1.89× ↑)
Hybrid Varied 11.9 (2.01× ↑) 17.5 (2.28× ↑)

and Hybrid models, which have the same accuracies as the
table/ORAM representation. Relative to Circuit ORAM, DHE
Uniform offers a speed-up only for the Terabyte model, but
is overkill for the smaller table sizes. DHE Varied reduces
the DHE layers sizes, and hence is able to speed-up the
performance relative to Circuit ORAM by 1.37× for Kaggle
and 1.99× for Terabyte. The Hybrid models introduce linear
scan as a more efficient technique for the smallest tables in
the models, and hence further reduce the pure-DHE latencies
by an average of 1.85× for Kaggle, and 1.30× for Terabyte.
On average, the Hybrid Uniform model achieves a 1.86× im-
provement and Hybrid Varied achieves a 2.14× improvement
over the Circuit ORAM scheme.

Figure 12 shows how the end-to-end latency varies as the
batch size is increased. The figure shows that the Hybrid
scheme scales better than ORAM with higher batch sizes,
since ORAM has to issue sequential accesses for each query in
the batch, whereas DHE can take advantage of weight reuse.
At batch size 128, Hybrid Varied is better than Circuit ORAM
by 2.61× for Kaggle and 3.08× for Terabyte, better than the
improvement for batch size 32 in Table VII.

Even though the best performing secure scheme (Hybrid
Varied) is 7.5× and 8.8× slower than the non-secure scheme
for Kaggle and Terabyte respectively, the DHE-based protec-
tion still satisfies the typical Service Level Agreement (SLA)
target latencies of industry models, which can go up to 100s
of ms (see Table II in [43]).

4) Co-located Model Latency-Throughput: We co-locate
multiple hybrid models on our system to maximize the system
throughput and study the latency-throughput characteristics.
Figure 13 shows the increasing co-location of DHE and Hybrid
Varied models (only Terabyte shown for brevity). The results
show that the linear scan/DHE allocation based on the
single-model thresholds can still effectively achieve the
best latency-throughput curve (10/26 linear scan tables for
Terabyte; 16/26 for Kaggle, not shown). Moreover, the pro-
posed hybrid protection can significantly improve the system
throughput compared to only using DHE for all tables. Assum-
ing a SLA target latency of 20ms, Hybrid Varied significantly
increases the latency-bounded throughput compared to
DHE Varied, from 33.2K inferences/s to 52.2K for Kaggle
(1.6×), and from 22.8K to 32.8K for Terabyte (1.4×). Note
that co-locating large number of ORAM-based models is not
possible in TEE memory due to their huge memory footprint.

C. DLRM Results on Meta Dataset

We analyze the performance of the embedding generation
layers of a DLRM model based on the 2022 Meta dataset [78].
This has many more tables (788) that are also larger, hence
more representative of a production model. We do not train
the model since there is no ground truth available; we assume
that the DHE size of Criteo Terabyte will be sufficient to
result in an accuracy that matches that of a baseline table

TABLE VIII: Results on a DLRM from the Meta Dataset:
embedding generation latency and memory footprint. Speed-
ups compared to Circuit ORAM (⋄) are indicated (↑). Memory
size relative to table (⊚) representation is shown.

Latency (ms) Memory (MB)
Index Lookup (non-secure) 52.1 931335.7 (⊚)

Linear Scan 3484553.6 same as above
Path ORAM 28413.6 3090046.3 (331.8%)

Circuit ORAM 1347.0 (⋄) same as above
DHE Uniform 906.9 (1.49× ↑) 2050.9 (0.22%)
DHE Varied 647.9 (2.08× ↑) 1324.5 (0.14%)

Hybrid Uniform 581.4 (2.32× ↑) 1199.0 (0.13%)
Hybrid Varied 560.2 (2.40× ↑) 1219.5 (0.13%)
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Prefill/TTFT
Batch=1

Decode/TBT
Batch=1

Prefill/TTFT
Batch=8

Decode/TBT
Batch=8

Prefill/TTFT
Batch=12

Decode/TBT
Batch=12

Index Lookup
(non-secure) 183.7 37.2 1942.6 74.2 3114.4 117.6

Linear Scan 534.7 57.1 5305.5 95.8 7982.0 139.6
Path ORAM 3355.5 51.5 27350.8 174.6 41204.9 268.7

Circuit ORAM 250.8 (⋄) 38.6 (⋄) 2499.5 (⋄) 78.6 (⋄) 3980.2 (⋄) 126.9 (⋄)

DHE 190.0
(1.32×↑)

38.9
(0.99×↓)

2023.9
(1.24×↑)

76.1
(1.03×↑)

3242.5
(1.23×↑)

118.9
(1.07×↑)

representation. We set an embedding dimension of 64 as in
the Criteo Terabyte model.

Table VIII shows the embedding generation latency in this
DLRM model for various techniques, for a batch size of 32
and 1 thread. We calculate the overall latency by executing
few tables at a time in our limited SGX memory. The most
competitive secure baseline is again Circuit ORAM which
executes the layers in 1.35s. The best DHE-based scheme
i.e. Hybrid Varied, improves this latency by 2.40×. Table
VIII also shows that ORAM exacerbates the already large
memory footprint of the table representation (910 GB) by
3.32×, and is impractical to deploy. The DHE based models
are extremely memory-efficient in comparison: Hybrid Varied
is only 1.2 GB, a reduction of over 2500×.

D. LLM Results

1) Accuracy: We finetuned the pretrained GPT-2 medium
model over the OpenWebText dataset, first with the original
table to obtain the baseline perplexity, and then with the table
replaced by DHE. Figure 14 shows the test set perplexity
(which is proportional to the test loss) after finetuning for
a few thousand iterations. The difference in the lowest
perplexity achieved is small i.e., the perplexity is 14.6 for the
table compared to 15.0 for DHE (only a 2.7% deterioration
in perplexity). To achieve good LLM utility with DHE, we
found it is critical to finetune the entire model, not just the
embedding layer.

2) Latency: We evaluate the LLM performance on an
input prompt of 256 tokens (the prefill size), and an output
generation (decoding) length of 128 tokens. We evaluate three
inference batch sizes: 1, 8 and 12 (the largest we could execute
in our SGX memory). Table 15 shows the performance of
GPT-2 medium with various embedding generation techniques.
The table shows that the finetuned DHE-based model generally
gives the best latency for both prefill and decode (albeit at
a very slight drop in perplexity). The only exception occurs
during the decoding stage for very small (∼ 1) batch sizes,
whereby Circuit ORAM, again the best baseline scheme,
has a slight edge. For best performance in this scenario, a
hybrid embedding scheme based on both DHE (for prefill) and
ORAM (for decoding) can be used. One the other hand, for
large input batch sizes, DHE outperforms Circuit ORAM by
up to 1.07× in decoding, due to its superior batch parallelism.

For prefill, DHE is always better than ORAM due to typi-
cally large token (batch) counts; on average, DHE improves
the prefill time by 1.26×relative to Circuit ORAM. In terms
of the end-to-end generation latency, the performance of DHE
is similar to the non-secure model, with an overhead of 2–5%
depending on the batch size. In contrast, the multiplicative
overhead of decoding in Circuit ORAM at large batch sizes
can lead to large end-to-end overheads, up to 12%.

3) Memory Footprint: Compared with the original em-
bedding table of 196.3 MB, the introduction of DHE
adds 56.0 MB of parameters to the GPT-2 medium model
(1353.5 MB), i.e., only a 4% memory overhead. On the
other hand, the ORAM representation of the embedding table
(513.6 MB) does add a 38% overhead. Note that these memory
space overheads will be smaller for larger LLM models.

VII. RELATED WORK

Protection for Embedding Tables: Embedding generation
methods that are alternative to table lookup have been recently
proposed as a way to improve efficiency [61], [125]. We
propose to re-purpose DHE [61] for secure embedding gen-
eration as it has a deterministic memory access pattern. DHE
was used by MP-Rec [50], along with table representation as
part of a multi-path recommendation system that optimizes
a heterogeneous platform based on accuracy, memory, and
performance; however, their work did not consider security.
Tensor Train (TT) decomposition [125] was used to decom-
pose the large embedding tables into multiple smaller matrices
to use a mix of lookup and computation; however, accessing
the resulting matrices still leaks information via indices, and
it is not secure. Look-Ahead ORAM [91] was proposed for
DLRM training by optimizing ORAM based on known future
training samples, whereas we focus on inference in our study
where inputs are not known and thus it is more challenging.

Alternative PPML techniques such as MPC and HE build
upon the one-hot matrix multiplication based embedding table
lookup [64], [116], but instead of these crypto-based tech-
niques, we use the much better performing TEEs for PPML.

Software ORAM in TEEs: In this study, we use two types
of ORAMs, Path ORAM [101] and Circuit ORAM [113].
There exist other ORAM proposals as well with different
performance characteristics [13], [49], [107]. However, we
only use ORAM to establish a reasonable software baseline,



and the proposed DHE approach for security outperforms
ORAM for all embedding table sizes that we found in today’s
DLRMs. Even for LLMs, DHE outperforms ORAM for large
and practical batch sizes.

Mitigation of Side-Channel Attacks: Defenses have been
proposed for each of the architecture components to mitigate
side-channel attacks. In caches and TLBs, static/dynamic par-
titioning [20], [23], [26], [72], [97], [114], [117], [130] and
randomized set mapping [23], [88], [89], [119] have been
introduced. In the processor front-end, side-channel attacks
have been demonstrated to leak the secret-dependent control
flow [22], [33], [71], [95], [124]; partitioning [110], [127] and
randomization [69] has been proposed to mitigate the side
channels. For the attack surfaces in the memory controller,
memory buses and DRAMs, mechanisms have been proposed
to shape the victim’s memory access pattern to mitigate
contention-based attacks [24], [99], [135], [136] and ORAM
in the memory controller [76], [94], [111] have been proposed
to defend against an attacker who can observe the address of
memory accesses. Yet, hardware-based ORAMs also have a
high latency overhead, 10–50× per access [34], [76], [94].
For the side-channel relying on page fault in SGX, isolation
and/or obfuscation schemes have also been proposed [4], [67],
[100]. However, these mitigation mechanisms focus only on a
subset of the attack surfaces and require hardware changes not
available today. Efficient solutions that cover all side-channel
attacks for ML models are needed.

Another possible mitigation is to randomize the layout
of the address space. However, static randomization with a
random offset does not provide enough entropy [1], [32],
[75]. Morpheus [36], [46] supports frequent re-randomization,
but side-channel is out of its scope. OBFUSCURO [4] and
Raccoon [92] use ORAM to randomize the data flow and incur
40-400× performance overhead depending on the workload.
MoLE [67] relocates data with random numbers, incurring
10× performance overhead while still leaving a small at-
tack window.

VIII. CONCLUSION

In this paper, we study secure embedding generation meth-
ods for hiding information leakage through embedding ta-
ble accesses in DLRMs and LLMs. We propose to use a
computation-based method (DHE) to secure memory access
pattern of embedding tables, and use it in conjunction with
traditional methods like linear scan for high performance. Even
though DHE is computation-intensive and is not as fast as
non-secure embedding table lookups and thus is not widely
deployed today, when memory access patterns need to be
protected, DHE shows its advantage. We implement secure
prototypes and demonstrate competitive performance for both
DLRM and LLMs with a negligible or no accuracy drop.
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APPENDIX

A. Abstract

This artifact package includes training, profiling and in-
ference scripts for the two deep learning applications with
embedding tables discussed in the paper (DLRM and LLM),
for various embedding generation techniques (non-secure table
lookup, linear scan, ORAM, and DHE). The deep learning
framework used is PyTorch, and all embedding generation
techniques are built into PyTorch layers as extensions. The
inference experiments are intended to be run on a CPU TEE
(the training can be done faster on a GPU and is not the
focus of the paper). Support is provided to run the CPU
programs inside a TEE (Intel SGX on a 3rd Gen Intel
Scalable Xeon Ice Lake Processor) via Gramine library-OS.
The inference programs on CPU are to be investigated for

performance (latency/throughput) and memory footprint. The
training scripts are just to show that embedding generation via
different techniques can reach comparable accuracies. Open-
sourcing these implementations of the proposed embedding
representations will allow other researchers to investigate and
further adapt these solutions to possibly other and larger deep
neural networks.

B. Artifact check-list (meta-information)
• Algorithm: embedding representations including table and

Deep Hash Embedding (DHE); Deep Learning Recommenda-
tion Model (DLRM); recommendation systems; Large Language
Model (LLM); natural language processing

• Program: Deep Learning models with modifications in em-
bedding layer

• Binary: N/A, python-based, with libraries to be downloaded
and custom C++ extensions to be compiled and installed

• Model: Deep Learning Recommendation Model (DLRM),
originally from Meta. Large Language Model, namely GPT-2.

• Data set: for DLRM: Criteo Kaggle/Terabyte datasets; for
LLM: OpenWebText corpus.

• Run-time environment: Linux OS, with SGX enabled
• Hardware: at least 3rd Gen (Ice Lake or later) Intel Scalable

Xeon Processor with SGX enabled, no minimum core count but
preferably 16

• Run-time state: not sensitive to cache state since focus is on
data-oblivious algorithms

• Execution: sole system user; profiling
• Metrics: execution time; model accuracy; model memory

footprint
• Output: execution timing information i.e. latency; training

accuracy; model memory size
• Experiments: run provided python scripts and observe final

output
• How much disk space required (approximately)?: datasets

require 2TB, experiments require around 100GB
• How much time is needed to prepare workflow (approxi-

mately)?: multiple days to setup and preprocess datasets
• How much time is needed to complete experiments (approx-

imately)?: multiple days to train, few days to run profiling and
inference experiments

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License
• Data licenses (if publicly available)?: Criteo Terabyte

License (https://ailab.criteo.com/criteo-1tb-click-logs-dataset/),
GPT-2 License (https://github.com/openai/gpt-2/blob/master/
LICENSE)

• Workflow automation framework used?: N/A
• Archived (provide DOI)?: Uploaded to GitHub at https:

//github.com/bearhw/SecEmb DHE and Zenodo at https://
zenodo.org/records/14578272

C. Description

1) How to access: For the experiment scripts, clone repos-
itory from GitHub, at https://github.com/bearhw/SecEmb
DHE. The datasets have to be accessed separately. Pretrained
models are available on Zenodo.

2) Hardware dependencies: This paper requires a CPU
with a Trusted Execution Environment (TEE); we specifically
target Intel CPUs with SGX. Hence, we require at least a
3rd Gen (Ice Lake or later) Intel Scalable Xeon Processor
with SGX enabled and 64GB secure memory. Preferably,
multiple cores are required, around 8-16, especially for LLM

https://ailab.criteo.com/criteo-1tb-click-logs-dataset/
https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/bearhw/SecEmb_DHE
https://github.com/bearhw/SecEmb_DHE
https://zenodo.org/records/14578272
https://zenodo.org/records/14578272
https://github.com/bearhw/SecEmb_DHE
https://github.com/bearhw/SecEmb_DHE


experiments. Also, the CPUs should have AVX-512 SIMD
support. For efficient training, GPUs are required, although
slower training/fine-tuning can be done on a CPU.

3) Software dependencies: We run deep learning experi-
ments via python-based framework i.e. PyTorch. The required
packages can be most conveniently setup in an Anaconda en-
vironment www.anaconda.com. For SGX, the Gramine library
OS (https://gramineproject.io/) needs to be installed.

4) Data sets: for DLRM: Criteo Kaggle/Terabyte datasets,
publicly available and need to processed after downloading
via instructions in our repo; these datasets also used in Meta’s
dlrm repo https://github.com/facebookresearch/dlrm; Require
2TB diskspace.

for LLM: OpenWebText https://huggingface.co/datasets/
Skylion007/openwebtext; processing instructions in nanoGPT
repo https://github.com/karpathy/nanoGPT. Require 50GB
diskspace.

5) Models: Deep Learning Recommendation Model
(DLRM), originally available at https://github.com/
facebookresearch/dlrm;

Large Language Model originally available at https://
huggingface.co/openai-community/gpt2-medium

D. Installation

To install Gramine on the system, follow the instruc-
tions at https://gramine.readthedocs.io/en/latest/installation.
html, which will require root access. Also generate a Gramine
key as per their instructions.

To setup Python and its various packages, first
install Anaconda at www.anaconda.com. Then create
a new environment conda create -n pyth310
python=3.10. Then install the following packages
via pip install package_name: pip install
torch torchvision torchrec future numpy
tqdm onnx pydot scikit-learn tensorboard
shapely scipy matplotlib transformers
datasets tiktoken wandb tqdm.

Also install the assembler: conda install
anaconda::nasm. Also install libssl-dev or
equivalent.

Before running experiments, one also has to install our
custom-implemented PyTorch extensions in the EXTENSIONS
folder, using the cmd-setup.sh scripts.

E. Experiment workflow

There are two applications in our paper: DLRM and LLM.
Each has its own directory in our repository, containing sub-
directories for their training, embedding layer profiling and
inference scripts.

F. Evaluation and expected results

The applications studied in our paper, DLRM and LLM,
each have a top-level directory in our repository, containing
sub-directories for their training, embedding layer profiling
and inference scripts. The top-level directory contains a
README file explaining the detailed commands to run for
each stage.

DLRM
The training sub-folder can be used to launch training for

table/DHE Uniform/DHE Varied, on the Criteo datasets, and
also evaluate test accuracy of pretrained models. There are
also scripts to convert DHE model to a table representation
(for use in linear scan etc.).

The profiler/inference sub-folder has scripts to measure
timing of embedding layers for various embedding generation
techniques (non-secure, DHE Uniform, DHE Varied, Linear
Scan, Path-ORAM, Circuit-ORAM), for various threads and
batch sizes. Further, a Jupyter notebook is provided for thresh-
olds calculation in the DLRM Hybrid scheme based on various
system configuration. Additionally, the end-to-end inference
scripts measure and output the overall model latency by em-
ploying various embedding generation techniques, including
hybrid.

LLM
The training sub-folder provides scripts to finetune a GPT-

2 medium model with table and DHE embedding layers on
the OpenWebText dataset. One can also evaluate the loss on
pretrained models, and sample the models for generation.

The profiling directory has scripts that allow measurement
of various embedding generation techniques (Table/DHE/Lin-
ear Scan/Tree ORAM) for different batch and embedding table
sizes. The inference directory allows end-to-end performance
evaluation of the GPT-2 model when combined with various
embedding generation techniques, by using a patched version
of the HuggingFace transformers library.

MISC
In the MISC folder, we provide scripts to output the DLRM

and LLM model memory footprints for various embedding
generation techniques.

www.anaconda.com
https://gramineproject.io/
https://github.com/facebookresearch/dlrm
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext
https://github.com/karpathy/nanoGPT
https://github.com/facebookresearch/dlrm
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