
FEDORA: Practical Federated Recommendation Model
Learning Using ORAM with Controlled Privacy

Jinyu Liu
The Pennsylvania State University

State College, PA, USA
jzl6359@psu.edu

Wenjie Xiong
Virginia Tech

Blacksburg, VA, USA
wenjiex@vt.edu

G. Edward Suh
NVIDIA

Westford, MA, USA
Cornell University
Ithaca, NY, USA
esuh@nvidia.com

Kiwan Maeng
The Pennsylvania State University

State College, PA, USA
kvm6242@psu.edu

Abstract
Training high-quality recommendation models requires col-
lecting sensitive user data. The popular privacy-enhancing
training method, federated learning (FL), cannot be used
practically due to these models’ large embedding tables. This
paper introduces FEDORA, a system for training recommen-
dation models with FL. FEDORA allows each user to only
download, train, and upload a small subset of the large ta-
bles based on their private data, while hiding the access
pattern using oblivious memory (ORAM). FEDORA reduces
the ORAM’s prohibitive latency and memory overheads by
(1) introducing 𝜖-FDP, a formal way to balance the ORAM’s
privacy with performance, and (2) placing the large ORAM in
a power- and cost-efficient SSD with SSD-friendly optimiza-
tions. Additionally, FEDORA is carefully designed to support
(3) modern operation modes of FL. FEDORA achieves high
model accuracy by using private features during training
while achieving on average 5× latency and 158× SSD lifetime
improvement over the baseline.

CCS Concepts: • Security and privacy → Usability in
security and privacy; • Information systems→ Recom-
mender systems.

Keywords: Federated Learning; Differential Privacy; Privacy
Preserving Machine Learning; Trusted Execution Environ-
ment; Oblivious Memory; Solid State Drives

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716014

ACM Reference Format:
Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng. 2025.
FEDORA: Practical Federated Recommendation Model Learning Us-
ing ORAM with Controlled Privacy. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’25), March
30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
19 pages. https://doi.org/10.1145/3676641.3716014

1 Introduction
Recommendation models are crucial in modern internet ser-
vices, recommendingmusic [76], videos [17, 105], news [123],
and products [134] to people. These models are commonly
trained by the service provider with sensitive user features
(e.g., demographic information or behavioral histories) [88,
135, 136], posing privacy concerns. Users are becoming re-
luctant to share these sensitive data, and governments and
companies are strengthening regulations to limit the collec-
tion of such data [28, 112]. Past incidents have reported that
the inability to collect these data degrades the quality of rec-
ommendation services [62]. Our evaluation (Section 6) also
shows that sensitive data is crucial for high model quality.

Federated learning (FL) [77] is a popular technique to train
models without collecting raw user data. Unfortunately, rec-
ommendation models cannot be trained with FL due to their
large embedding tables, which convert discrete sparse user
features into latent vectors. These tables are usually too
large [58, 85, 130, 134] to train with FL because participants
of FL cannot practically download and train them on their
local devices (e.g., smartphones) in their entirety.
In this paper, we propose FEDORA, a system that trains

recommendation models with FL by allowing users to down-
load and train only subsets of embedding tables relevant to
their data. As naively doing so leaks private features via the
entries downloaded [37, 87], FEDORA adopts ORAM [31],
a primitive that obfuscates memory access patterns, to mit-
igate this leakage. The main challenges lie in overcoming

https://orcid.org/0009-0006-0069-4542
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0001-6409-9888
https://orcid.org/0000-0002-0321-8406
https://doi.org/10.1145/3676641.3716014
https://doi.org/10.1145/3676641.3716014

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

ORAM’s high latency and memory overheads while still
maintaining the privacy of user features.
First, we introduce 𝜖-feature-level differential privacy (𝜖-

FDP), a variant of the popular 𝜖-differential privacy (𝜖-DP)
tailored for our privacy goal. When the strongest privacy is
not necessary, 𝜖-FDP enables FEDORA to trade off small pri-
vacy in a controlled manner to gain significant improvement
in its ORAM. Any privacy degradation can be interpreted
through its connection with the well-studied DP framework.
FEDORA effectively controls 𝜖 in 𝜖-FDP to balance pri-

vacy, performance, and accuracy while supporting many
popular operation modes of modern FL. To mitigate the pro-
hibitive memory overheads of large embedding tables, FE-
DORA hosts the large ORAM on a power and cost efficient
SSD with several SSD-friendly optimizations. We implement
our prototype of FEDORA in software, assuming a trusted
execution environment (TEE) with a small (4 KB) on-chip
scratchpad. Below summarizes our contribution:
• To the best of our knowledge, FEDORA is the first to adopt
ORAM to realize recommendation model training with
FL. We show in our evaluation that FEDORA’s ability to
leverage sensitive user features in a privacy-preserving
manner can significantly improve the final model accuracy.
Through careful design, FEDORA supports many common
operation modes in FL.

• We introduce a formal notion of privacy in federated rec-
ommendation training, 𝜖-FDP. We show how an ORAM-
based FL system can be designed to achieve 𝜖-FDP while
arbitrarily trading off performance, privacy, and accuracy.
We show that existing heuristic ORAM optimizations are
special cases of our general design.

• FEDORA introduces system optimizations that allow the
large ORAM to be held in a cheap SSD while maintaining
reasonable latency and SSD lifetime. Our evaluation shows
that FEDORA realizes up to 1.8–24× latency improvement
and 21–1000+× SSD lifetime improvement over other SSD
baselines, and 6–22× and 1.9–23× hardware cost and en-
ergy improvement over a DRAM-based alternative.

2 Background and Motivation
2.1 Deep Learning Recommendation Models
Modern recommendation models [16, 33, 49, 85, 92, 110, 120,
121, 127, 130, 135, 136] use user features to predict items
a user might like. When the feature values are categorical
or sparse (e.g., recently purchased items are not a vector-
valued input), they are first translated into a dense vector
through an embedding table. Each entry (row) of an embed-
ding table holds a vector (64–256 bytes [58, 85]) that is a
learned latent representation of the corresponding feature
value. Translating with an embedding table is a lookup op-
eration, where the accessed row index directly leaks the fea-
ture value. The translated vectors, along with dense features
(naturally vector-valued inputs), go through a multi-layer

Server Em
b.

 T
ab

leMLP Alice

Bob

Figure 1.An insecure FL of a recommendation model, where
users only partially download/train the embedding tables.

perceptron (MLP) [85] or a Transformer-like [130] network
to produce a prediction. The cardinality of the sparse fea-
ture’s domain determines the height of an embedding table,
and the table can be very large (e.g., equal to the number
of items on an e-commerce site that a user can purchase).
Production-scale models often use tables with millions or
billions of entries [70, 130, 134]. Each user only accesses a
small subset of the table (e.g., entries corresponding to a few
items the user recently purchased), resulting in an extremely
sparse memory access pattern.
Sensitive user features.Many features used by modern rec-
ommendation models are sensitive and can cause a privacy
issue if their values are leaked [37, 90, 115]. For example, mod-
ern models may use a user’s demographic information, geo-
graphic location, or past behavioral histories (e.g., items re-
cently purchased or websites recently visited) [88, 135, 136].
The number of feature values can also be sensitive infor-
mation. For example, the number of items a user recently
purchased can reveal whether the user is a heavy shopper.

2.2 Federated Learning (FL)
Federated learning (FL) [77] is a popular method for training
models without collecting raw user data. It has been adopted
by major companies like Google [124, 133], Meta [34, 41],
and LinkedIn [117].
In each round 𝑡 of FL, the server selects a subset of users

C to participate. Each selected user 𝑐 ∈ C downloads the
current global model 𝜃𝑡 from the server and trains the model
on their local devices with their private data. After training,
users send their trained model (or, equivalently, the gradi-
ent1) back to the server. The server aggregates the received
gradient (Δ𝜃𝑐𝑡) from each user 𝑐 , and uses the aggregated
gradient to update its global model. This process repeats
for a predetermined number of rounds or until the model
converges. The popular FedAvg [77] performs a weighted
averaging of the gradients using the number of samples of
each user (𝑛𝑐𝑡):

𝜃𝑡+1 = 𝜃𝑡 − 𝜂Σ𝑐
𝑛𝑐𝑡

𝑛𝑡
Δ𝜃𝑐𝑡 , (1)

where 𝜂 is the learning rate and 𝑛𝑡 = Σ𝑐𝑛
𝑐
𝑡 . FL is not en-

tirely safe by itself [6, 7, 50, 137] and is often used with
1Here, gradient refers to the delta between the model before and after the
local training. It is not necessarily the per-batch gradients in SGD.

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

1 32Path: 0

Untrusted Memory
Bucket

D
ata B

lock

②
ORAM

Controller

Position
Map

①,④

Stash
③

M
etadata

Secure Area

Block

⑤ B
lock
ID

V
Path

Figure 2. Path ORAM accessing the highlighted block.

secure aggregation (SecAgg) [8, 41, 114] and differential pri-
vacy (DP) [78, 124, 133]. SecAgg hides individual user gra-
dients (𝑛𝑐𝑡) from the service provider and only reveals the
aggregated gradients. DP provides a mathematical guarantee
on the information leakage through the aggregated gradi-
ent [78]. FEDORA is compatible with both SecAgg and DP.
FL cannot protect user features. The large embedding
tables prohibit recommendation models from adopting FL.
Prior work [87] suggested training the rest of the model
with conventional FL while making users download, train,
and upload only subsets of the embedding tables related to
their data (Figure 1). When the rest of the model (MLP or
Trasnformer-like dense layers) is relatively small [38, 85, 135,
136], this idea enables practical FL.

However, doing so is not private because the downloaded
entries directly leak the user’s feature values (Section 2.1).
While FL commonly runs inside tamper-proof secure hard-
ware on the server—called trusted execution environment
(TEE; Section 5.1)—the accessed entries can still be discovered
through various side channels [37]. A common workaround
is to refrain from using any sensitive features during train-
ing [55, 58] and only use features the users agreed to share.
However, not leveraging private features severely limits the
model quality [58] as we will show in Section 6.

2.3 Oblivious RAM (ORAM)
ORAM [30, 31] is a security primitive that randomizes the
memory access pattern and encrypts data values. Many pop-
ular ORAMs are variants of Path ORAM [108] (Figure 2). In
Path ORAM, data are stored in fixed-size blocks in a binary
tree (ORAM tree) where each node, called a bucket, has a
fixed number of slots that can hold blocks. Each block is
assigned to a particular path in the tree, and the position
map holds the mapping between the blocks and the paths.
The invariant is that blocks are always either in a bucket
along the assigned path or in the stash, a fixed-size buffer
that can hold a certain number of blocks [97]. Each slot also
holds metadata, including a valid flag that indicates whether
the slot contains a block. Typically, the stash and the posi-
tion map are placed in an on-chip storage (e.g., SRAM) that
is hard to attack, while the ORAM tree is placed off-chip.
On-chip storage is expensive [109] and small (usually a few

kilobytes [26, 96]). If the position map is too large, it can also
be stored off-chip in separate recursive ORAMs [108].

Figure 2 summarizes the operation of Path ORAM. When
a request to a block is made, the ORAM controller (1) reads
the position map to find on which path the block resides.
(2) The entire path is brought to the stash and decrypted,
and (3) the requested block is served. (4) Then, the block is
randomly re-assigned to a new path, and the position map is
updated. (5) Finally, to keep the stash size limited, as many
blocks as possible are re-encrypted and evicted back to the
same path that was read while maintaining the invariant. To
an external observer, every ORAM access looks like reading
and writing a random path.

3 Feature-level Differential Privacy (FDP)
During FL, we must prevent an adversary (e.g., the FL server
owner) from inferring each user’s feature values (e.g., re-
cently purchased item). We introduce a variant of differen-
tial privacy (DP), feature-level differential privacy (FDP), to
achieve this privacy goal. We also explain how FDP can be
extended to hide multiple values at the same time or hide
the number of feature values (e.g., the number of recently
purchased items). Then, we explain why existing ORAMs
cannot achieve FDP without significant overheads.

3.1 Definition of 𝜖-FDP
DP is the de facto standard in quantifying ML privacy [124,
133]. We first reiterate the popular 𝜖-DP [22] below:

Definition 3.1 (𝜖-DP). Let M be a (randomized) algorithm
and D be the input space of M. For all subsets S of the
output ofM and all neighboring inputs 𝑑, 𝑑 ′ ∈ D,M is said
to be 𝜖-DP if:

Pr[M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖Pr[M(𝑑 ′) ∈ 𝑆] . (2)

𝜖-DP ensures that the output S only gives bounded infor-
mation on whether the secret input was 𝑑 or 𝑑 ′. When 𝜖 is
small, the output distribution from 𝑑 and 𝑑 ′ becomes similar,
making it hard for the adversary to guess the input (high
privacy). When 𝜖 is zero, 𝑑 and 𝑑 ′ produces the exact same
output distribution (perfect privacy).

The definition of neighboring inputs is application-specific,
and choosing what is considered as neighboring inputs re-
sults in different privacy protections. DP-SGD [1] considers
two datasets differing in one training sample as neighboring,
which hides individual samples in the training set (item-level
DP). DP-FedAvg [78] considers two datasets differing in one
user as neighboring, entirely hiding the existence of each
user during training (user-level DP). Our privacy goal is to
hide each feature value of a user, which is different from both.
Item-level DP cannot effectively protect feature values when
users have several training samples with the same feature
value (e.g., demographic information will be the same for
all the training samples from the same user). User-level DP

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

can be too strong because it hides the existence of an entire
user [4]. Instead, we define a new feature-level differential
privacy (FDP) as a middle ground:

Definition 3.2 (𝜖-FDP). If a system achieves 𝜖-DP, where
an input 𝑑 is an arbitrary group of user feature values, and
a neighboring input 𝑑 ′ is defined by replacing any single
feature value from 𝑑 into an arbitrary different value in the
feature value space, we say the system achieves 𝜖-FDP.

Interpretation of 𝜖-FDP. In an 𝜖-FDP system with a low 𝜖 ,
replacing a feature value with a different value minimally
influences the output (bounded by 𝑒𝜖), making it hard for
an adversary to guess a feature value of a user by looking
at the (observable) output. Prior works on DP showed that
𝜖 can bound the success rate of an adversary [29, 48, 52, 84],
which directly extends to 𝜖-FDP. While the interpretation of
𝜖 varies between contexts, many works on DP assume 𝜖 ≤ 10
to be reasonably safe and 𝜖 ≤ 1 to be strongly safe [89]. We
show in Section 6 that FEDORA works well in these regimes.
𝜖-FDP can be extended to hide multiple (correlated) values

or the total number of feature values of a user. If we make
all the users’ number of feature values to be 𝑛 (through
thresholding and paddingwith dummy values) and hide the𝑛
values simultaneously, we can also hide the number of feature
values of a user—as the attacker cannot distinguish between
𝑛 real values and 𝑛 dummy values (no real value). According
to group privacy of DP [22], hiding 𝑛 values simultaneously
increases the privacy parameter by a factor of 𝑛. That is,
hiding 𝑛 features while achieving 𝜖-FDP requires adding an
equivalent noise of hiding each value with 𝜖

𝑛
-FDP.

3.2 Limitations of ORAM in Achieving 𝜖-FDP
ORAM [26, 31, 108] can hide the embedding table access
pattern and was used for recommendation model privacy
in different contexts [90]. We show that applying vanilla
ORAM achieves 𝜖-FDP with 𝜖 = 0 (perfect FDP) but severely
degrades the performance, and a naive optimization similar
to [25, 128, 132] results in 𝜖 = ∞ (no FDP).
Strawman 1: Vanilla ORAM is private but inefficient.
When ORAM is applied to embedding tables, access to a
particular entry cannot be distinguished from access to any
other entries. By definition, this achieves FDP with 𝜖 = 0,
the strongest privacy. However, vanilla ORAM incurs signif-
icant performance and memory overheads. ORAM amplifies
each memory access into 𝑂 (𝑙𝑜𝑔𝑁) accesses with 𝑁 entries.
Storing 𝑁 entries inside ORAM also amplifies the memory
footprint (by 1.5–2× [69, 94, 96, 131] to 6–8× [96, 108]) be-
cause ORAM moves data blocks inside the tree and cannot
work when the tree is full. In recommendation, 𝑁 can go up
to tens of millions to billions [58, 75, 134], making both the
latency and memory amplification significant.
Strawman 2: Naive optimization is not private. Instead
of accessing the ORAM on every user request, one might
come up with an optimization where requests to the same

entry are aggregated inside the ORAM controller, and only
one read/write request per unique entry is sent to the ORAM
to serve all duplicate requests. This optimization is similar to
prior ORAMs that aggregate requests inside cache [25, 128]
or stash [132]. Unfortunately, such a heuristic optimization
does not achieve FDP. In such optimizations, the total num-
ber of accesses varies with feature values, which leaks in-
formation to the attacker (e.g., FL server owner). Consider
an extreme case where all the users access the exact same
entry, resulting in only one ORAM read/write. The adversary
will know that all the users have the same feature values,
a valuable piece of information that would not have been
leaked with Strawman 1. It can be seen that changing one
feature within 𝑑 to a different feature (𝑑 ′) in this extreme
case will increase the number of ORAM accesses from one to
two—changing the output distribution unboundedly (𝜖 = ∞).

3.3 Designing a Controllable 𝜖-FDP ORAM
We introduce a generalized method to design an ORAM that
can achieve 𝜖-FDP with an arbitrary 𝜖 . We will subsequently
show that Strawman 1 and 2 from Section 3.2 are special
cases of our generalized method. Our method will be used to
balance privacy, performance, and accuracy when anything
other than the extreme designs (Strawman 1, 2) is desired.

Let C be the subset of users selected to participate in the FL
round. Each user 𝑐 ∈ C has a set of embedding entries 𝐸𝑐 cor-
responding to their private data that theymust download and
update to complete the training round. Let 𝐾 =

∑
𝑐∈C |𝐸𝑐 | be

the total number of entries required by the selected users and
𝑘𝑢𝑛𝑖𝑜𝑛 = |⋃𝑐∈C 𝐸𝑐 | be the number of unique entries within
𝐾 . Note that𝐾 is not necessarily a secret, while 𝑘𝑢𝑛𝑖𝑜𝑛 is. Our
goal is to send 𝑘 ≤ 𝐾 requests to the ORAM while ensuring
that the number of ORAM requests (𝑘) only gives bounded
information about the feature values. This can be done by
choosing 𝑘 following the probability distribution:

𝑝𝑖 =
𝑌𝑖𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛−𝑖 |
2

Σ𝐾
𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

, 1 ≤ 𝑖 ≤ 𝐾 (3)

where 𝑝𝑖 serves as the probability density function (PDF)
of 𝑘 = 𝑖 being selected. 𝑌𝑖s are predefined parameters that
shape the PDF to balance performance and accuracy.

Proof. The proof directly follows that of the exponential
mechanism (see [22] for its general form and [42] for the
variant using 𝑌𝑖). We briefly restate the proof below for
completeness. From Equation 2, it suffices to show that
Pr[M(𝑑) ∈𝑆]
Pr[M(𝑑 ′) ∈𝑆] ≤ 𝑒

𝜖 for arbitrary𝑑 and𝑑 ′. When the observable
output 𝑆 is the number of ORAM requests, the probability of
an input 𝑑 to result in 𝑖 ORAM requests is directly 𝑝𝑖 from

Equation 3, i.e., Pr[M(𝑑) = 𝑖] =
𝑌𝑖𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛−𝑖 |
2

Σ𝐾
𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

. If 𝑑 re-

sults in 𝑘𝑢𝑛𝑖𝑜𝑛 and 𝑑 ′ results in 𝑘 ′𝑢𝑛𝑖𝑜𝑛 , |𝑘𝑢𝑛𝑖𝑜𝑛 − 𝑘 ′𝑢𝑛𝑖𝑜𝑛 | ≤ 1
as changing one feature value in the input can change the

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

union size at most 1. We can show that for all 𝑖 ,

Pr[M(𝑑) = 𝑖]
Pr[M(𝑑 ′) = 𝑖] =

𝑌𝑖𝑒
−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛−𝑖 |

2

Σ𝐾
𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

·
Σ𝐾𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘′
𝑢𝑛𝑖𝑜𝑛

− 𝑗 |
2

𝑌𝑖𝑒
−𝜖

|𝑘′
𝑢𝑛𝑖𝑜𝑛

−𝑖 |
2

= 𝑒
𝜖 (|𝑘′

𝑢𝑛𝑖𝑜𝑛
−𝑖 |−|𝑘𝑢𝑛𝑖𝑜𝑛−𝑖 |)

2 · (
Σ𝐾𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘′
𝑢𝑛𝑖𝑜𝑛

− 𝑗 |
2

Σ𝐾
𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

)

≤ 𝑒 𝜖2 · (
Σ𝐾𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘′
𝑢𝑛𝑖𝑜𝑛

− 𝑗 |
2

Σ𝐾
𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

)

≤ 𝑒 𝜖2 · 𝑒 𝜖2 · (
Σ𝐾𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

Σ𝐾
𝑗=1𝑌𝑗𝑒

−𝜖 |𝑘𝑢𝑛𝑖𝑜𝑛− 𝑗 |
2

) = 𝑒𝜖 .

□

Figure 3 shows some sample PDFs with different 𝜖 and 𝑌𝑖 ,
showing how the proposed method can trade-off between
performance, privacy, and accuracy. The 𝑌𝑖s used are (a, c, e)
uniform (𝑌𝑖 = 1), (b) square (𝑌𝑖 = 1 for 25 ≤ 𝑖 ≤ 100, else𝑌𝑖 =
0), (d) pow (𝑌𝑖 = 𝑖5), and (f) delta (𝑌𝑖 = 1 for 𝑖 = 100, else 𝑌𝑖 =
0). Without considering security, for the best performance
and accuracy, the ORAM should be accessed exactly 𝑘𝑢𝑛𝑖𝑜𝑛 =

30 times (bars in blue). If the system accesses the ORAM less
(𝑘 < 𝑘𝑢𝑛𝑖𝑜𝑛), some necessary entries cannot be read (lower
accuracy; bars in orange). If accessed more (𝑘 > 𝑘𝑢𝑛𝑖𝑜𝑛),
dummy accesses are being issued (lower performance; bars
in green). We highlight several interesting observations:
• Observation 1: 𝜖-FDP improves performance. Com-
pared to the vanilla ORAM (Strawman 1), which will al-
ways read the main ORAM 𝐾 = 100 times, Figures 3 (a–e)
reads the ORAM much less, improving performance.

• Observation 2: 𝜖 trades off privacy with accuracy and
performance. Figures 3 (a, c, e) shows that reducing 𝜖
(more privacy) increases the chances of incorrect (orange)
and less efficient (green) executions.

• Observation 3: 𝑌𝑖 trades off performance with accu-
racy. Figures 3 (b, d, f) shows that choosing a nonuniform
𝑌𝑖 allows trading the chances of being inaccurate (orange)
with being inefficient (green), whose effect is shown with
the unbalanced orange and green regions.

• Observation 4: Strawman 1/2 are special cases. When
an extreme 𝑌𝑖 is used to entirely eliminate the chance of
being incorrect by always being inefficient, the system de-
generates to 𝑘 = 𝐾 (Strawman 1; Figure 3 (f)). In this case,
the value of 𝜖 does not matter and can go down to 0 (per-
fect FDP). When very high 𝜖 is used (no FDP), the system
degenerates to 𝑘 = 𝑘𝑢𝑛𝑖𝑜𝑛 (Strawman 2; Figure 3 (a)).

4 FEDORA System Design
FEDORA is an FL system for recommendation models that
uses ORAM to allow partial embedding table updates. It
(1) adopts the 𝜖-FDP ORAM from Section 3.3 to trade off

(a) eps=99999.0
Y=uniform

(b) Y=square
eps=0.5

(c) eps=3.0 (d) Y=pow

30 100

(e) eps=1.0

30 100

(f) Y=delta

Figure 3. Sample PDFs with different 𝜖 and 𝑌𝑖 , with 𝑘𝑢𝑛𝑖𝑜𝑛 =

30 and 𝐾 = 100. Different 𝑌𝑖s explained in the main text.

performance, privacy, and accuracy, (2) supports popular
operation modes in FL, and (3) places the large ORAM in a
cheap SSD for reduced power and cost.

4.1 Assumptions and Threat Model of This Work
This work assumes on-chip data in the FEDORA controller
is safe, while the attacker can observe both the values and
the access pattern (address, size, and timing) for data stored
off-chip (DRAM or SSD). The security of the communica-
tion between the FEDORA controller and the users and the
attestation of the FEDORA controller’s integrity to the user
is outside the scope of this work. We use constant-time logic
inside the FEDORA controller to prevent timing side chan-
nels. We do not protect the FEDORA controller against other
(e.g., thermal) side channels. Such an FEDORA controller can
be implemented in TEEs [43] or as custom hardware [108].
This work focuses on protecting user data against an

honest-but-curious service provider that follows the FL pro-
tocol while trying to steal user data. The work does not
consider malicious users colluding with the service provider
(i.e., Sybil attack [20]). The threat model is common and
aligns with many prior FL literature [8, 98]. In general, FL
cannot protect effectively against Sybil attacks [6], which is
a known limitation of FL that FEDORA inherits. Defending
against Sybil attacks in FL is an open problem orthogonal
to this paper [27, 46, 47, 100]. We assume a predetermined
minimum and a maximum number of clients participating
in each round of FL [35, 41, 126, 133], and each client has a
predetermined maximum number of features.

4.2 FEDORA Overview
Figure 4 explains how FEDORA works. FEDORA has two
ORAMs, the large main ORAM, which holds the embedding
table, and a smaller buffer ORAM, which holds the working
set of entries of each round. Each embedding table entry (64–
256 bytes) becomes a block in the main ORAM. FEDORA
places themain ORAM inside an SSD, while the buffer ORAM
resides in DRAM. Buffer ORAM serves two purposes: it pro-
vides support for a wide range of modern FL operationmodes
and serves as a DRAM cache for the main ORAM. FEDORA
applies 𝜖-FDP to the main ORAM.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

FEDORA Controller
Union set: 7, 38, 42

①Union user requests.
42, 7, 42, 38, 42, 38

②Choose how many entries to read (k).
union set size (kunion): 3

num. requests (K): 6 k=4

Untrusted
SSD

Main ORAM

③Read k entries.

7, 38, 42, X

④Entries sent.

⑤Users train
the entries.

⑥Updates aggregated
inside buffer ORAM.

⑦Aggregated updates
applied to main ORAM.

Buffer ORAM

Untrusted
DRAM

Trusted (TEE)
ServerClients

Figure 4. Overview of FEDORA.

Each FL round starts by selecting a subset of users to
participate. 1○ The selected users send download requests
to the FEDORA controller for embedding table entries that
correspond to their feature values. The FEDORA controller
securely calculates the union of requested entries across all
participating users, and 2○ chooses the number of entries to
read from the main ORAM (𝑘) by sampling from the PDF of
Equation 3 inside its secure controller. Then, 3○ the FEDORA
controller moves 𝑘 entries from the main ORAM into the
buffer ORAM. 4○ Requested entries are served to the users
by the FEDORA controller from the buffer ORAM, and 5○
users train using the downloaded entries. 6○ After training,
users send the gradients of the embedding entries back to the
FEDORA controller, which aggregates them inside the buffer
ORAM. 7○ Finally, the FEDORA controller moves 𝑘 entries
from the buffer ORAM back to the main ORAM, using the
aggregated gradients to update them in the process.
At step 1○, FEDORA controller goes through 𝐾 user re-

quests and calculates the union set of 𝑘𝑢𝑛𝑖𝑜𝑛 elements. This is
done without leaking any information by allocating an array
to hold the resulting union set and simply linear scanning
through both data structures (list of requests and result ar-
ray) in a data-oblivious manner. The array is conservatively
sized to make overflowing impossible. The union algorithm
is 𝑂 (𝐾2) and can result in significant overheads when 𝐾
is large. When 𝐾 is too large, FEDORA splits the requests
into evenly-sized chunks and performs steps 1○– 3○ chunk
by chunk to reduce the linear scanning overhead. This still
achieves the same 𝜖-FDP thanks to the parallel composition
property of DP [22]. However, using smaller chunks can de-
grade accuracy as 𝜖-FDP adds noise per chunk, and the noise
accumulates with more chunks. It also degrades performance
when there are duplicate entries across chunks. The chunk
size is selected empirically (16K entries in our evaluation) to
balance between performance and accuracy.

When reading from themainORAM (steps 2○– 3○), dummy
accesses may be made (when 𝑘 > 𝑘𝑢𝑛𝑖𝑜𝑛 , 𝑋 in the figure), or
some necessary entries may fail to be read (when 𝑘 < 𝑘𝑢𝑛𝑖𝑜𝑛).

Download Phase Training Phase

Main ORAM

Buffer ORAM
Alice

Bob

Charlie

Aggregation Phase

Update Phase
Aggr Slot

Figure 5.Downloaded entries aremoved to the buffer ORAM
(left, step 3○). Users’ gradients are aggregated in the aggre-
gation slot inside the buffer ORAM (top right, step 6○) and
used to update the main ORAM (bottom, step 7○).

In the latter case, training accuracy can degrade. Several mit-
igation strategies can minimize the impacts of such errors.
First, FEDORA has the liberty to choose which 𝑘 entries
to read. Some strategies include choosing the first 𝑘 entries,
choosing randomly, prioritizing popular entries or previously
unseen entries, etc. Second, different strategies can be used
for lost entries. Strategies include using a random/default
value or simply dropping the corresponding training sample.
Our prototype chooses the first options for both, which were
simple and empirically worked well (Section 6.4).

4.3 Buffer ORAM for Different Operation Modes
Figure 5 summarizes how buffer ORAM works (steps 3○–
7○). Blocks in the buffer ORAM are twice as large as the
main ORAM blocks. Each entry read from the main ORAM
is placed in the first half of the buffer ORAM blocks (Fig-
ure 5 (left)). Users’ requests are served from the buffer ORAM
(Figure 5 (middle)), and users’ gradients are aggregated in
the second half of the corresponding buffer ORAM blocks
(Figure 5 (top right)). The aggregated gradients are used to
update the original entry (first half) when the entry moves
back to the main ORAM (Figure 5 (bottom right)).
The aggregation phase (Figure 5 (top right)) and the up-

date phase (Figure 5 (bottom right)) can be customized to
support a wide range of common operation modes in FL.
FEDORA exposes a programmable pre-aggregation func-
tion (Pre) applied to each gradient before aggregation and a
post-aggregation function (Post) applied to the aggregated
gradient right before update. This allows system designers
to implement a generalized version of Equation 1:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 Post(Σ𝑐 Pre(Δ𝜃𝑐𝑡)) . (4)

The most popular FedAvg (Equation 1) can be achieved by
choosing Pre(Δ𝜃𝑐𝑡) = 𝑛𝑐𝑡Δ𝜃

𝑐
𝑡 and Post(𝑥) = 𝑥

𝑛𝑡
, which can

be implemented by adding one additional 4-byte slot for
each block to accumulate 𝑛𝑡 = Σ𝑐𝑛

𝑐
𝑡 . This implementation

naturally supports users dropping out during training by
dynamically adjusting 𝑛𝑡 . More complex algorithms, such as
FedAdam [95], can be implemented by choosing Post(𝑥) that

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

involves the first- and second-order moments [54], with addi-
tional slots in each block to accumulate them. Implementing
a differentially private FL (e.g., DP-FedAvg) [78] is also pos-
sible2. A DP training method for recommendation models,
EANA [86], can be adopted for FL by choosing Pre(𝑥) =

𝑥/max(1, | |𝑥 | |2
𝐶

) and Post(𝑥) = 𝑥 +N(0, 𝜎2𝐶2𝐼) for constants
𝜎 and 𝐶 [1, 86]. Another recent method, LazyDP [68], can
be implemented for FL by using Post(𝑥) = 𝑥 +N(0, 𝑟𝜎2𝐶2𝐼),
where 𝑟 is the number of rounds since the entry was last up-
dated. 𝑟 can be tracked with an additional per-block counter.
Buffer ORAM privacy analysis. Introducing buffer ORAM
does not degrade privacy. To the adversary, each round is
simply seen as reading 𝑘 entries from the main ORAM and
writing them to the buffer ORAM (3○), reading 𝐾 entries
from the buffer ORAM (4○), updating 𝐾 entries in the buffer
ORAM (6○), reading 𝑘 entries to the buffer ORAM and writ-
ing them to themain ORAM (7○).𝑘 and𝐾 are publicly known
parameters, and both ORAMs protect which entries have
been accessed. The buffer ORAM’s capacity is sized to never
overflow based on the maximum number of clients allowed
per round and the maximum number of features per client.
The capacity can be reconfigured in software when these
parameters change.

4.4 Placing the Main ORAM in an SSD
The main ORAM must be 1.5–8× larger than the data it
protects (Section 3.2). When the tables are already several gi-
gabytes/terabytes [58, 85, 130, 134], placing the main ORAM
in DRAM involves significant power, energy, and hardware
cost. The costs are wasteful because user-side training and
communication, not the server-side, are usually the main
bottleneck in real-world FL [35, 57, 117, 126], leaving the
large DRAM significantly underutilized. Instead, FEDORA
places the main ORAM in a cheap, off-the-shelf SSD.
Limitations of existing SSD-based ORAMs. Prior SSD-
based ORAMs [5, 11, 14, 69, 101, 106, 107, 113, 129] are
not suitable for FL because the frequent reads/writes of FL
quickly wear out the SSDs. As our evaluation shows (Sec-
tion 6.2), using an existing SSD-friendly ORAM [101] based
on Path ORAM for FL can quickly wear out the SSD only
in 2–8 days, which is unreasonably short compared to the
typical device lifetime in modern data centers (traditionally
around 2–3 years, recently up to 5–6 years for lower carbon
footprint [71]). The slow SSD reads/writes also add up to
over 8× slowdown to the end-to-end FL latency (Section 6.3).
FEDORA’s SSD-friendly ORAM design. Prior ORAMs
based on Path ORAM [101] cannot leverage the unique data
access pattern of FL where the first half (step 3○) of the

2This DP is different from DP in 𝜖-FDP. DP-FedAvg prevents training data
leaking through the trained model [78, 124, 133], while 𝜖-FDP prevents
feature values leaking through the number of accesses to ORAM (𝑘).

accesses are read-only and the second half (step 7○) are write-
only. Instead, FEDORA utilizes a custom variant of RAW
ORAM [26] to benefit from FL’s unique access patterns.

RAWORAM [26] consists of access-only (AO) and eviction-
only (EO) accesses. An AO access occurs on every memory
read/write, which reads the entire path and places it in a
path buffer. The path buffer is iterated through to find the
requested block, and only the requested block moves to the
stash. As the stash is not as populated after one AO access,
RAW ORAM does not immediately write blocks back (unlike
Path ORAM). Instead, only the valid flag of the metadata is
updated to indicate that the block is pulled out. After 𝐴 AO
accesses (𝐴, the eviction period, is a design parameter), an
EO access occurs, which selects a path in a predetermined
order and evicts blocks from the stash to the selected path.
Optimization 1: FL-friendlyRAWORAM.Adopting RAW
ORAM immediately reduces the number of SSD writes be-
cause EO accesses (path read + write) only happen after 𝐴
AO accesses (path read). On top of this benefit, FEDORA
develops several additional optimizations. During step 3○,
the main ORAM is read-only. In the original RAW ORAM,
even a series of read-only accesses need to be interspersed
with EO accesses because blocks accumulate in the stash and
can eventually cause overflow. However, stash overflow does
not happen in FEDORA because all the blocks read from the
main ORAM immediately move to the buffer ORAM, making
the main ORAM’s stash always empty. Leveraging the fact,
FEDORA entirely eliminates EO accesses during step 3○.
Similarly, AO accesses can be eliminated during step 7○

as it is write-only. In normal RAW ORAM, updating a block
incurs (1) an AO access, which brings in the target block to
the stash, (2) the modification of the block inside the stash,
and (3) an eventual EO access after 𝐴 AO accesses, which
puts the block back. In FEDORA, the block to update in
step 7○ is never in the main ORAM and is always inside the
buffer ORAM. Thus, AO accesses can be removed, and only
EO accesses occur after every 𝐴 block update moving from
the buffer ORAM to the main ORAM’s stash.
Optimization 2:MakingAOaccess SSD-write-free.While
AO accesses do not write to the path, they still update the
valid flag of the main ORAM’s metadata and cause SSD
writes. FEDORA introduces a new data structure called VTree
tomakeAO accesses entirely SSD-write-free. VTree is a small
ORAM placed in DRAM, which only holds the valid flags
extracted from the main ORAM. VTree is not independent,
and blocks in VTree mirror the movements of the corre-
sponding blocks in the main ORAM. VTree adds one bit per
data block (64–256 bytes) plus additional metadata for secure
encryption (Section 5.2), totaling around 2–112 MB.
Optimization 3: Minimizing EO accesses. With VTree,
only EO accesses write to the SSD. As EO accesses happen
only after𝐴 AO accesses, FEDORAmaximizes𝐴 to minimize
SSD writes. However, increasing 𝐴 increases the bucket size,
stash size, and path buffer size [96], degrading the latency.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

Also, more on-chip SRAM is needed if these are placed on-
chip [26, 108]. For these issues, the original RAW ORAM
used a small 𝐴 (e.g., 5 [26]).
FEDORA places the stash and the path buffer in off-chip

DRAM, allowing the use of a fairly large stash and path
buffer without needing a large on-chip SRAM. Placing these
structures off-chip typically increases latency, but we ob-
served that the decreased number of SSD writes cancels the
additional overheads for FEDORA. Also, FEDORA can use a
large bucket size without much downside because the SSD,
which is a block device, can only access data in a large gran-
ularity (e.g., 4 KB) anyways. FEDORA balances𝐴, the bucket
size, stash size, and path buffer size to maximize the SSD life-
time while not significantly adding latency. Through careful
tuning, FEDORA was able to increase 𝐴 significantly (up to
92), cutting down the number of EO accesses to 1.1%.
Privacy analysis. Our optimizations do not degrade the
security properties of RAWORAM [26] because it can be seen
as simply moving 𝑘

𝐴
EO accesses that should have occurred

in between 𝑘 AO accesses at step 3○ to step 7○. If we consider
the state of the main ORAM at the end of each round, the
stash occupancy will be equivalent to what it would have
been when using the vanilla RAW ORAM; thus, the same
proofs from [96] for stash overflow can be used. Within each
round, the stash never overflows due to the buffer ORAM.

5 Implementation Details
We implement our prototype in software, assuming run-
ning in a trusted execution environment (TEE) with a small
(4 KB) on-chip SRAM (scratchpad). TEEs are already widely
available in FL systems [41, 117, 133], which makes build-
ing FEDORA in them appealing. Prior works [67, 81, 101]
also implemented ORAM in a TEE, and our implementation
is similar to them. It is possible to implement FEDORA as
specialized hardware instead [26, 96, 108].

5.1 TEE-based Implementation Overview
Background on TEEs. A TEE [2, 43, 59, 60, 109] is a spe-
cialized hardware that provides data confidentiality and in-
tegrity verification. TEEs encrypt data stored off-chip and
only decrypt data inside its secure hardware. Academic pro-
posals [109] and earlier versions of Intel SGX [43] used strong
counter-based memory encryption, where an incrementing
counter and an authentication tag were allocated for every
cache line for freshness and tamper detection [32]. Addi-
tionally, tampering with counters was detected through an
expensive Merkle tree [32, 109]. Other TEEs [44] do not
provide such strong security and are prone to certain at-
tacks [64, 65]. While TEEs can provide data confidentiality
when used for FL [41] for the rest of the model, they cannot
hide the memory access patterns [37] for embedding tables.

Commercial TEEs do not offer on-chip scratchpads that are
safe from external attacks, and any programmer-controlled

Bucket 0
ctr1

Non-Leaf Group

Leaf Group
Auth Tag

Bucket 1 Bucket 2
ctr2 ctr3 ctr4

Auth Tag
Bucket 0 Bucket 1 Bucket 2

Figure 6. Group-based encryption for tree-structured data.

data must be placed in insecure off-chip DRAM. The lack of a
scratchpad makes ORAM implementation inefficient [67, 81,
101] on them because typical ORAMs assume a safe on-chip
scratchpad [26, 96, 108].
TEE-based FEDORA. Our FEDORA prototype is built in
software, assuming it runs in TEEs that FL systems com-
monly have [41, 117, 133]. Specifically, our implementation
assumes a TEE with a strong counter-based memory en-
cryption support [43, 109] and a small amount (4 KB) of
scratchpad. We assume a small scratchpad (although exist-
ing commercial products do not have it [43, 44]) because it
makes the entire system a lot more efficient and is feasible
to add—many embedded CPUs [3] and hardware [53, 83]
have scratchpads, and on-chip cache can be repurposed as
a scratchpad through cache locking [82] or specialized fea-
tures [12, 19, 40]. FEDORA can also be implemented without
the small scratchpad with additional overheads (Section 6.6).
As we use minimal (to no) scratchpad, we place most of

the data structures off-chip. The on-chip scratchpad holds
the key and the root counter for encryption (Section 5.2), and
a small scratch space for efficient EO access implementation.
FEDORA places all the other components other than the
main ORAM in off-chip DRAM and the main ORAM in the
SSD. Following [101], we implemented FEDORA in C++ with
a best-effort constant-time, data-independent logic to avoid
timing side channels.

5.2 Encrypting Off-chip Data Structures
Existing TEEs’ [43, 109] hardware engines for counter-based
encryption [32] are efficient for small data structures but
incur high computation/memory overheads for larger struc-
tures. FEDORA uses existing hardware for small data struc-
tures but uses a tailored algorithm for larger structures (po-
sition map, buffer ORAM, VTree, and the main ORAM).

When encrypting these tree structures in off-chip DRAM,
FEDORA groups multiple nodes and encrypts/decrypts them
together (Figure 6). Nodes in the same group share the counter
and the tag, and the group size balances the counter/tag over-
head and the encryption/decryption latency. We empirically
group 512 bytes of nodes together, which gives an analytical
8× memory overhead improvement over a TEE that allo-
cates the counter/tag per cache line (64 bytes) [32]. FEDORA
groups nodes in a subtree together (Figure 6) to minimize
the number of encrypted groups in a path.

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

FEDORA protects counters without Merkle tree by plac-
ing the counter for each group in its parent group (Fig-
ure 6 (right)). The counter for the root group (root counter)
is stored in the scratchpad. Decrypting a path starts from the
root: each group is decrypted, the integrity of the values and
the counter are verified, and the counter is used to decrypt
the next group. Encryption happens in the opposite direction.
The main ORAM is encrypted without any counters other
than the root counter, using a similar idea to [26]. Using the
fact that writes to the main ORAM only happen during EO
accesses in a predetermined order (Section 4.4), FEDORA
tracks the number of writes to each bucket with a single root
counter that tracks the total number of EO accesses [26].

6 Evaluation
We aim to answer the following questions on FEDORA:
• How much longer is the SSD lifetime?
• How much faster is FEDORA?
• How much accuracy is improved with private features?
• How much cost benefit does using an SSD bring over a
DRAM-based system?

6.1 Evaluation setup
System setup. We evaluated FEDORA on Intel i7-13700K
CPU with Samsung PM9A1 1 TB SSD. We did not use a com-
mercial TEE because they do not have any on-chip scratch-
pad. Our result can be interpreted as a close estimate of a
setup with a TEE with a scratchpad as TEE-related overheads
are expected to be small compared to SSD overheads.
Datasets. We studied three popular datasets, MovieLens-
20M [36] (MovieLens), Taobao Ads Click and Display [88]
(Taobao), and Criteo Kaggle [18] (Kaggle). MovieLens and
Taobao reveal the user ID of each datapoint and allow FL
simulation [74]. We used them both for performance and
FL accuracy evaluation. Kaggle does not reveal user ID and
cannot simulate data heterogeneity between users in FL. We
used Kaggle only for performance evaluation.

For MovieLens and Taobao, we considered the behavioral
history (recently liked movies for MovieLens, recently pur-
chased items for Taobao) private. We studied two modes of
protection: (1) only hiding individual feature values (hide
priv val) and (2) hiding the number of feature values (hide #
of priv vals). For the latter, we made every user have 100 real
or dummy values through padding or random subsampling.
For Kaggle, we assumed the largest table as private and only
evaluated the former mode.
Performance study. The open-source datasets are much
smaller-scale than production environments [58]. To study
scenarios closer to production, we scaled up these datasets
with a synthetic dataset generation technique [85], scaling
up the table size, number of users, and number of feature
values per user. We evaluated three table sizes. The Small
table has 10 million entries, 64 bytes each. TheMedium table

has 50 million entries, 128 bytes each. The Large table has 250
million entries, 256 bytes each. The sizes follow open-source
models and industry papers [58, 75, 85, 134, 136].
We scaled up the number of requests (𝐾) to 10K, 100K,

and 1M. These numbers represent the number of users per
roundmultiplied by the number of feature values of each user.
The number of users per round ranges from 100 [35, 126]
to 6,500 [124], and the number of feature values per user is
usually several tens [58], but can go up to hundreds [135, 136].
The studied 𝐾 values represent a wide range of real-world
use cases; for example, 10K requests can represent 100 users
per round (similar to [35, 126]) with each having 100 feature
values (similar to [135, 136]), or 1,000 users per round (similar
to [41]) with each having 10 values (similar to [58]).

For end-to-end FL latency, we assumed the communication
through the network and the user-side training altogether
take roughly 2 minutes per round, following the reported
numbers from Google [126]. While the setups significantly
differ from each other, other real-world studies reported sim-
ilar numbers [35, 41, 57, 117, 125]. When estimating SSD life-
time, we assumed 5.4 PB can be written per TB capacity [103].
As the lifetime of an SSD depends on the size (increasing the
size arbitrarily prolongs the lifetime), we report the expected
lifetime when the SSD is the same size as the ORAM.
FL accuracy study.We used RF2 [74], an FL simulator for
recommendation models. We used MovieLens and Taobao
datasets to train the DLRM [85] model. We used the default
setup of RF2 from its Github repository [73] except for: (1)
we did not use an ℓ2 regularizer for the embedding tables as it
becomes impractical for large tables and (2) added a dropout
at the end of the MLP layer with 𝑝 = 0.5 for MovieLens for
improved accuracy. Taobao did not benefit from dropout.
Baseline. We implemented Path ORAM+, which follows
the general structure of FEDORA (Figure 4) but uses an
SSD-friendly variant of Path ORAM as the main ORAM.
We implemented the SSD-friendly Path ORAM by adopt-
ing several optimizations from prior work [101], achieving
competitive performance with the numbers reported by the
prior work [101]. Path ORAM+ always accessed the main
ORAM for each user request (Strawman 1 from Section 3.2)
for perfect privacy.

6.2 FEDORA Increases the SSD Lifetime
Figure 7 summarizes the SSD lifetime of different setups. Path
ORAM+ and FEDORA with perfect FDP (𝜖 = 0) only have
one bar (All) because the behavior does not change with
users’ private data distribution (both always accesses the
main ORAM for each user request). When 𝜖 > 0, FEDORA is
able to skip some duplicate accesses (Figure 3), gaining more
improvements when the data distribution is skewed.
Overall lifetime. Path ORAM+ suffers from an extremely
short SSD lifetime (2 days–1.2 months for Small, 8 days–
3.9 months for Medium, and 2–23 months for large) that

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

10K Updates Per Round

101

103

Lif
et

im
e

(M
on

th
s)

Small Medium Large

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

100K Updates Per Round

100

102

Small Medium Large

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

1M Updates Per Round

100

102

Small Medium Large

5 years
2 years

All
Kaggle

Taobao (Hide priv val)
Movielens (Hide priv val)

Movielens (Hide # of priv val)
Taobao (Hide # of priv val)

Geomean

Figure 7. FEDORA significantly improves the expected SSD lifetime over the baseline.

makes using SSD unrealistic. FEDORA’s SSD-friendly opti-
mizations significantly increase the lifetime. Even with 𝜖 = 0,
our SSD-friendly optimizations improve the SSD lifetime to
become 1.4 months–3 years for Small, 10 months–10+ years
for Medium, and over 2.7 years for Large. With 𝜖 = 1, the
lifetime improves even more. The improvement depends on
the users’ private feature distributions, achieving an average
lifetime improvement over the 𝜖 = 0 case ranging from 1.56×
(Kaggle) to 38× (Taobao, Hide # of priv vals). Compared to
Path ORAM+, FEDORA improves SSD lifetime by 21× to
over 1000× when 𝜖 = 1. In many cases, FEDORA achieves
an SSD lifetime near or over the typical SSD replacement
period (2–5 years).
Reduction in ORAM accesses. The increased lifetime of
the 𝜖 = 1 case is mainly due to the reduced number of main
ORAM accesses. Table 1 summarizes the reduced number
of accesses (Reduced Accesses column) with different 𝜖 com-
pared to the perfectly privacy case (𝜖 = 0). The table shows
that trading off a small amount of privacy (𝜖 > 0) cuts down
the number of accesses to the main ORAM by 51.06–97.69%.
The benefit depends on the skewness of the datasets. Taobao
(hide # priv vals) enjoys the most benefit as the secret (num-
ber of items a user purchased) is extremely skewed—heavy
shoppers have hundreds of items in their purchase histories,
while many others have empty histories.

The reduction does not vary a lot when decreasing 𝜖 be-
cause both the additional dummy accesses and the lost ac-
cesses increase, canceling out each other (as in Figure 3(c, e)).
When the reduction is extreme (over 90%, hide # priv vals),
increasing privacy increases the number of total accesses.
This is because the number of dummy accesses grows much
faster than lost accesses as the left side of the distribution,
e.g., the orange part of Figure 3 (c, e), cannot grow beyond 0.

6.3 FEDORA Improves the End-to-end Latency
Figure 8 shows the additional overheads introduced to the
assumed 2-minute latency of FL. When the number of up-
dates per round is small (10K), even Path ORAM+ adds less
than 5% overhead as the per-round latency of FL (2 minutes)

is already slow. However, when the number of updates is
larger (100K–1M), Path ORAM+ starts to add non-negligible
latency overheads of 39–75% and 354–838% for 100K and
1M updates, respectively. FEDORA with 𝜖 = 0 improves the
latency overheads into 32–42% and 322–446% through its
SSD-friendly optimizations. With 𝜖 > 0, the overheads again
improve due to the reduced main ORAM accesses. FEDORA
with 𝜖 = 1 only adds on average 10–15% for 100K updates
and 104–155% for 1M updates, which is 1.6–6.2× and 1.6–6×
improvements over 𝜖 = 0. Adding everything together, the
latency improvement over Path ORAM+ becomes 2–24×
(10K), 1.9–9.1× (100K), and 1.8–9.7× (1M) when 𝜖 = 1. The
improved numbers make using an SSD immediately practical
with 10K—100K updates per round. When larger numbers of
updates are desired (1M), FEDORA with 𝜖 = 1 adds around
2–3 minutes of latency, which may be tolerable depending
on the use case.

6.4 Private Features Improve the Model Quality
Table 1 summarizes the final model quality (AUC column)
in terms of receiver operating characteristic area under the
curve (ROC-AUC or AUC, higher is better), a common met-
ric for recommendation models [74, 85]. The first two rows
(pub) show the AUC when not using private features during
training (0.7104, 0.5902). These represent scenarios without
FEDORA. Rows with 𝜖 = ∞ represent FEDORA without FDP
(Strawman 2 in Section 3.2). The corresponding AUC num-
bers (0.7931 and 0.7972 for MovieLens, 0.5972 for Taobao)
show that using private features indeed improves the model
quality significantly. As 𝜖 = ∞ is not private, these numbers
represent an upper bound of what FEDORA can achieve.

The rest of the rows with 𝜖 = {0.1, 1.0} show the achieved
accuracy of FEDORA with different levels of privacy. In gen-
eral, higher privacy (𝜖 = 0.1) achieves less accuracy. How-
ever, all setups achieve significantly higher accuracy than the
baseline, which only uses non-private features (pub). Note
that in recommendation models, even a small improvement
in accuracy (0.1% [134] or 0.001 AUC [136]) is considered sig-
nificant. FEDORA improves the accuracy even when some

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

10K Updates Per Round

0.0%

2.0%

4.0%

Ro
un

d
Ov

er
he

ad
w.

r.t
 2

-m
in

ut
e

FL
 ro

un
d

Small Medium Large

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

100K Updates Per Round

0%

20%

40%

60%

Small Medium Large

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

1M Updates Per Round

0%

250%

500%

750%
Small Medium Large

All
Kaggle

Taobao (Hide priv val)
Movielens (Hide priv val)

Movielens (Hide # of priv val)
Taobao (Hide # of priv val)

Geomean

Figure 8. FEDORA improves the overhead ORAM adds to each round of FL.

Table 1. ORAM access reduction and model quality under
different 𝜖-FDP settings. Reduced Accesses is the percentage
of accesses saved compared to the perfect privacy ORAM
(𝜖 = 0). Dummy and Lost are the percentage of dummy and
lost accesses compared to the optimal number of accesses
(𝜖 = ∞). pub is trained without using private features.

Dataset 𝜖
Reduced
Accesses Dummy Lost AUC

pu
b MovieLens - - - - 0.7104

Taobao - - - - 0.5902

hi
de

pr
iv

va
l

MovieLens
∞ 52.5% 0% 0% 0.7972
1.0 52.5% 0.1% 0.1% 0.7955
0.1 52.5% 1.1% 1.1% 0.7944

Taobao
∞ 51.11% 0% 0% 0.5972
1.0 51.11% 1.01% 1.01% 0.5972
0.1 51.06% 9.89% 9.77% 0.5970

hi
de

#
of

pr
iv

va
ls

MovieLens
∞ 91.13% 0% 0% 0.7931
1.0 91.02% 11.65% 10.47% 0.7924
0.1 78.37% 156.0% 12.16% 0.7929

Taobao
∞ 99.05% 0% 0% 0.5972
1.0 97.69% 156% 12.89% 0.5967
0.1 80.78% 1924% 2.42% 0.5970

entries are lost due to 𝜖-FDP because the lost number of
entries is reasonably small (Table 1, Lost column).

6.5 FEDORA Reduces Power, Energy, and Cost
Figure 9 plots the estimated hardware cost, power, and en-
ergy consumption of FEDORA and Path ORAM+, normalized
by the numbers from a DRAM-based alternative that uses
a large DRAM to hold the main ORAM. To calculate the
hardware cost, we assume all hardware is replaced every
five years or when the SSD wears out, whichever happens
first. We assume DRAM cost of $3.15/GB and SSD cost of
$0.1/GB [79]. We assumed DRAM draws a constant power of
375mW/GB [61] and SSD draws its rated power of 6.2 W [99]
when it is actively reading or writing. For energy calculation,
we projected an optimistic DRAM-based design’s latency
by subtracting the SSD-related latencies from FEDORA. We

0%

20%

40%

Ha
rd

wa
re

Co
st

16
0%

33
7%

96
%Small Medium Large

0%

20%

40%

Po
we

r

66
%

16
0%

53
%

98
%

52
%

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)

Pat
hO

RA
M+

FE
DORA

(=0)

FE
DORA

(=1)
0%

20%

40%

En
er

gy
 p

er
Ro

un
d

67
%

21
5%

18
8%

12
3%

66
%

52
%
57

%

All
Geomean
Kaggle

Taobao (Hide priv val)
Movielens (Hide priv val)
Movielens (Hide # of priv val)
Taobao (Hide # of priv val)

Figure 9. Estimated hardware cost, power, and energy con-
sumption. The values are normalized with the DRAM-based.

used the analytical numbers for the DRAM-based design as
we did not have enough DRAM to run the actual design.

While SSD is much cheaper than DRAM, Path ORAM+ is
not cheaper in terms of hardware cost, as the SSD wears out
too quickly and must be replaced too frequently. By signifi-
cantly increasing the SSD lifetime, FEDORA (𝜖 = 1) reduces
the hardware cost by 6-22× over the DRAM-based design.
Similarly, Path ORAM+ avoids the idle power of the large
DRAM but incurs frequent high-power SSD reads/writes.
FEDORA (𝜖 = 1) again reduces the power and the energy
consumption by 1.9–23× compared to the DRAM-based de-
sign through fewer SSD reads/writes.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

Small
10K Updates

Medium
100K Updates

Large
1M Updates

0.0
0.5
1.0
1.5
2.0

No
rm

al
ize

d
La

te
nc

y With Secure SRAM No Secure SRAM

Figure 10. Normalized training latency of FEDORA with or
without the 4 KB scratch space in on-chip SRAM.

6.6 Additional Ablation Studies
Importance of a small on-chip SRAM. Our prototype
assumes a small (4 KB) on-chip scratchpad in the TEE, which
is used as a scratch space to accelerate path eviction. Al-
ternatively, it is possible to implement FEDORA on a TEE
without such scratch space, placing everything in off-chip
DRAM. This comes at the cost of increased linear scanning
during the eviction process. Figure 10 shows the slowdown
when the scratch space is not available. A small scratch space
greatly (∼1.5×) helps FEDORA when block (entry) size is
small (Figure 10, Small and Medium). As the block size gets
larger (Figure 10, Large), the on-chip SRAM becomes less
helpful.
Choosing the bucket sizes. In general, we found it to be
helpful to make the bucket size a multiple of 4 KB to match
the SSD read/write granularity. Within the constraint, choos-
ing the bucket size is a balancing act of trading between the
SSD lifetime and the latency. As described in Section 4.4,
increasing the bucket size increases the SSD lifetime by al-
lowing a larger eviction period 𝐴. At the same time, the
larger bucket size increases the read/write latency as more
data moves on each read and write. For all the evaluations,
we used a bucket size of 4 KB. 4 KB is already quite large (we
can achieve up to 𝐴 = 92), and increasing the bucket further
had diminishing returns. For example, increasing the bucket
size of the Small table from 4 KB to 16 KB increases the SSD
lifetime by only 18% but increases latency by 67%. Larger
buckets can be used when a longer lifetime is desired over
lower latency.

7 Additional Related Work
Secure federated submodel learning (SFSL) [87] is a
prior work on FL for recommendation models. SFSL tried to
hide the private feature values of users by directly perturb-
ing them with DP noise. However, SFSL does not achieve
FDP and provides much weaker protection because it uses a
neighbor definition different from Definition 3.2. Instead of
replacing a feature value from 𝑑 to an arbitrary value to get
𝑑 ′, SFSL replaces feature values to a value that some other
users requested in the same round, narrowing down the pos-
sible feature values to a small number of candidates. This
unintuitive choice with much weaker privacy was because
using the neighbor definition from Definition 3.2 did not

give good final accuracy for SFSL, as the authors acknowl-
edged [87]. Unlike SFSL, FEDORA uses ORAM to hide the
accesses and additionally uses DP (𝜖-FDP) to control the
leakage through the number of ORAM accesses. FEDORA
can achieve much better accuracy with the correct neighbor
definition (Definition 3.2) because FEDORA adds DP noise
to an aggregate statistic (number of ORAM accesses), while
SFSL adds noise to individual feature values. It is well-known
that DP works much better on aggregated statistics [22].
Other ORAMs.Most ORAMs either use a binary tree [9, 11,
13–15, 26, 56, 67, 81, 90, 91, 93, 94, 96, 101, 118, 119, 128, 131,
132] or oblivious shuffling [5, 30, 69, 106, 107, 113, 129]. FE-
DORA uses the former due to its lower read/write overheads.
The latter incurs frequent and large writes to storage, making
them unsuitable for FL. LAORAM [90] is a variant of ORAM
that also targets recommendation model training. However,
LAORAM optimizes for a centralized GPU training [90], and
the requirements and optimizations totally differ from FE-
DORA. FEDORA’s 𝜖-FDP may be applicable to systems like
LAORAM as well.
FL for recommendation models. Other than SFSL [87],
recommendation models haven’t been studied a lot in FL
due to their large embedding tables. Most existing works
use simple models with tiny embedding tables [10, 21, 39, 45,
51, 63, 66, 74, 80, 117]. Singhal et al. [102] does not commu-
nicate the large table and locally approximate the table on
user devices. Using tiny tables or approximations inevitably
degrades the model’s accuracy, especially when the datasets
are complex.
Hiding embedding table accesses. Several different meth-
ods have been explored to hide the embedding table access
pattern of recommendation models in different contexts.
LAORAM [90] used ORAM in the context of centralized
training. Lam et al. [58] used two-server private information
retrieval (PIR) for on-device inference. Others [24, 42, 72]
added statistical noise, similar to SFSL [87]. These approaches
all optimize for different application use cases and not di-
rectly comparable to FEDORA.
Recommendation models with an SSD. Several works
ran recommendation model training or inference with em-
bedding tables placed inside an SSD [23, 104, 111, 116, 122].
These works did not focus on privacy and did not use ORAM.

8 Conclusion
Recommendation model training currently requires the ser-
vice provider to collect sensitive user data. Existing feder-
ated learning solutions cannot be adopted for recommenda-
tion models due to the large embedding tables. We present
FEDORA, an ORAM-based FL system for recommendation
models with large embedding tables. FEDORA introduces 𝜖-
FDP to control the privacy and efficiency of ORAM-based FL
and places the large ORAM inside an SSD with several SSD-
friendly optimizations. FEDORA maintains high training

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

accuracy by privately using sensitive features while improv-
ing the SSD lifetime and latency significantly. Compared to
a DRAM-based system, FEDORA uses much less hardware
cost, power, and energy.

A Artifact Appendix
A.1 Abstract
We present two pieces of artifacts for evaluation. One is a
modified version of RF2 [74] that performs federated learn-
ing simulations (FLSim) that produce Table 1. The other is
C++ code that implements the proposed FEDORA system
(ORAMSim) and is used to evaluate the system’s performance
(Figures 7 and 8).

A.2 Artifact check-list (meta-information)
• Compilation:
– FLSim: None
– ORAMSim: g++ and make

• Run-time environment:
– FLSim: PyTorch Environment
– ORAMSim: Ubuntu 22.04 or later

• Hardware:
– FLSim: a CUDA-capable GPU
– ORAMSim: x86-64 CPU with AVX2 support, NVME SSD
formatted in ext4

• Output:
– FLSim: reduced accesses, wasted reads, lost reads, and
AUC similar to those presented in Table 1.

– ORAMSim: Plots similar to Figures 7 and 8.
• Experiments:
– FLSim: Federated learning simulation
– ORAMSim: FEDORA system performance evaluation

• How much disk space required (approximately)?:
– FLSim: 10GB
– ORAMSim: 100GB

• How much time is needed to prepare workflow (ap-
proximately)?: 2 hours

• How much time is needed to complete experiments
(approximately)?: 12 hours

• Publicly available?: Yes
• Code licenses (if publicly available)?:
– FLSim: Creative Commons Attribution-NonCommercial
4.0 International

– ORAMSim: BSD 3-Clause
• Workflow automation framework used?: Python and
Bash scripts.

• Archived (provide DOI)?:
– FLSim: 10.5281/zenodo.14812749
– ORAMSim: 10.5281/zenodo.14812528

A.3 Description
A.3.1 How to access.

• FLSim: https://github.com/psu-paws/FEDORA-FLSim
• ORAMSim: https://github.com/psu-paws/FEDORA-
OramSim

A.3.2 Hardware dependencies. A CUDA-capable GPU
is required to run FLSim. To run ORAMSim, an x86-64 multi-
core CPUwith AVX2 support and anNVME SSD formatted in
ext4 are required. We used an Intel i7-13700K and a Samsung
PM9A1 1TB SSD. About 100GB of free disk space is required.
Preferably, an SSD can be dedicated to the experiments.

A.3.3 Software dependencies. To run FLSim, a PyTorch
environment is needed. We ran our ORAMSim experiments
on Ubuntu 22.04.5 LTS. Please see the following list of soft-
ware dependencies:

• GCC 11.4 or higher
• CMake 4.3 or higher
• Libsodium 1.0.19-stable or higher
• LibAIO
• Python 3.10.12 or higher

A.3.4 Data sets. The datasets used in the experiment are
downloaded as part of the installation process. Refer to Sec-
tion 6.1 for detailed description.

A.4 Installation
A.4.1 FLSim.

• Clone repository.
git clone \
git@github.com:psu-paws/FEDORA-FLSim.git

• Change directory into the project.
• Setup a Python environment with PyTorch. Refer to
https://pytorch.org/ for instructions. Using a Conda or
a Python virtual environment is recommended.

• Install dependencies specified in requirements.txt.
pip install -r requirements.txt

• Run ./download_dataset.sh to download and un-
pack Taobao Ads Click and Display[88] andMovieLens
20M[36] datasets.

A.4.2 ORAMSim.

• Install GCC, CMake, LibAIO, and other dependencies.
On Ubuntu 24.04, run the following command:

sudo apt install build-essential \
python3-dev cmake libaio1t64 libaio-dev

• Install Libsodium following instructions at https://doc.
libsodium.org/installation

• Clone repository. Note --recurse-submodules flag.
git clone --recurse-submodules \

git@github.com:psu-paws/FEDORA-OramSim.git

• Change directory into the project.
• run ./build.sh. This should configure and build the
project, placing the outputs in a directory named build.

https://doi.org/10.5281/zenodo.14812749
https://doi.org/10.5281/zenodo.14812528
https://github.com/psu-paws/FEDORA-FLSim
https://github.com/psu-paws/FEDORA-OramSim
https://github.com/psu-paws/FEDORA-OramSim
https://pytorch.org/
https://doc.libsodium.org/installation
https://doc.libsodium.org/installation

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

• Download trace files from https://doi.org/10.5281/zenodo.
14818427. Decompress the zip archive into the project’s
root directory. This should create a directory named
input-traces.

• Setup a Python environment. Using a Conda or a Python
virtual environment is recommended.

• Install Python dependencies specified in requirements.txt.
pip install -r requirements.txt

A.5 Experiment workflow
A.5.1 FLSim.

• Optionally select the GPU you wish to use by setting
CUDA_VISIBLE_DEVICES.

• run ./run_tests.sh. This could take several hours,
depending on the speed of your GPU.

• run python process_logs.py to generate a CSV file
similar to Table 1.

A.5.2 ORAMSim.

• Set ORAM_WORKING_DIR environment variable to point
to the NVME drive you want to use for the experiment.
For example, if the drive is mounted at /data, then
you should run export ORAM_WORKING_DIR=/data .
You can leave it unset to use the current directory,
although this is not recommended.

• Run python generate_orams.py to create theORAMs.
This is slow and can take multiple hours. You should
find the created ORAMs in the orams directory.

• Run python recsys_sim.py to run the experiments.
This is slow and can take multiple hours. You should
find the run statistics in the experiments directory

• Run python get_latency_recsys_results.py to
collect the results into a CSV file.

• Run python make_graphs_for_paper.py to gener-
ate plots similar to Figures 7 and 8 in the paper.

A.6 Evaluation and expected results
A.6.1 FLSim. The AUC, reduced accesses, dummy, and
lost values should be close to the corresponding ones for
MovieLens in Table 1.

A.6.2 ORAMSim. The code should produce graphs simi-
lar to Figures 7 and 8, except without data from the "Large"
configuration. Recsys_lifespan_months.pdf should be sim-
ilar to Figure 7. Recsys_latency.pdf should be similar to
Figure 8. The absolute latency numbers may vary depending
on hardware, but overall trends should remain similar.

A.7 Experiment customization
A.7.1 FLSim. We have omitted evaluation on the Taobao
Ads Click and Display dataset[88] to make the runtime rea-
sonable. If you want to run the Taobao-based experiments,
uncomment lines 11-17 in run_experiments.sh.

A.7.2 ORAMSim. We have shortened the experiment and
excluded the "Large" configuration to make the runtime rea-
sonable. If you want to run the full-length experiment, please
make the following modifications.

• Uncomment line 99-100 in generate_orams.py, this
will enable the "Large" configuration.

• Change line 22 in recsys_sim.py from 1 million to
10 million. This will increase the number of accesses
performed in each test case.

Note this requires 500GB of additional disk space and might
take over a day to complete.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-and-badging-current

• https://cTuning.org/ae

References
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan,

Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differ-
ential privacy. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 308–318. ACM,
2016.

[2] Arm. Trustzone for cortex-a. https://www.arm.com/technologies/
trustzone-for-cortex-a, 2023.

[3] ARM Ltd. Arm Cortex-M series processors. https://developer.arm.
com/ip-products/processors/cortex-m, 2021.

[4] Hilal Asi, John Duchi, and Omid Javidbakht. Element level dif-
ferential privacy: The right granularity of privacy. arXiv preprint
arXiv:1912.04042, 2019.

[5] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng
Wang, and Yan Huang. Practicing oblivious access on cloud storage:
the gap, the fallacy, and the newway forward. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, pages 837–849. ACM, 2015.

[6] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin
Shamsabadi, Ilia Shumailov, and Nicolas Papernot. Reconstructing
individual data points in federated learning hardened with differen-
tial privacy and secure aggregation. In 8th IEEE European Symposium
on Security and Privacy, EuroS&P 2023, Delft, Netherlands, July 3-7,
2023, pages 241–257. IEEE, 2023.

[7] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin
Shamsabadi, Ilia Shumailov, and Nicolas Papernot. When the cu-
rious abandon honesty: Federated learning is not private. In 8th IEEE
European Symposium on Security and Privacy, EuroS&P 2023, Delft,
Netherlands, July 3-7, 2023, pages 175–199. IEEE, 2023.

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for federated learning on
user-held data. arXiv preprint arXiv:1611.04482, 2016.

[9] Dingyuan Cao, Mingzhe Zhang, Hang Lu, Xiaochun Ye, Dongrui
Fan, Yuezhi Che, and Rujia Wang. Streamline ring ORAM accesses
through spatial and temporal optimization. In IEEE International
Symposium on High-Performance Computer Architecture, HPCA 2021,
Seoul, South Korea, February 27 - March 3, 2021, pages 14–25. IEEE,
2021.

https://doi.org/10.5281/zenodo.14818427
https://doi.org/10.5281/zenodo.14818427
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://developer.arm.com/ip-products/processors/cortex-m
https://developer.arm.com/ip-products/processors/cortex-m

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

[10] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated
matrix factorization. IEEE Intelligent Systems, 36(5):11–20, 2020.

[11] Anrin Chakraborti, Adam J. Aviv, Seung Geol Choi, Travis Mayberry,
Daniel S. Roche, and Radu Sion. roram: Efficient range ORAM with
o(log2 N) locality. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019.

[12] Prasenjit Chakraborty, Preeti Ranjan Panda, and Sandeep Sen. Par-
titioning and data mapping in reconfigurable cache and scratchpad
memory–based architectures. ACM Trans. Des. Autom. Electron. Syst.,
22(1), September 2016.

[13] Yuezhi Che, Yuan Hong, and Rujia Wang. Imbalance-aware scheduler
for fast and secure ring ORAM data retrieval. In 37th IEEE Interna-
tional Conference on Computer Design, ICCD 2019, Abu Dhabi, United
Arab Emirates, November 17-20, 2019, pages 604–612. IEEE, 2019.

[14] Yuezhi Che and Rujia Wang. Multi-range supported oblivious RAM
for efficient block data retrieval. In IEEE International Symposium on
High Performance Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22-26, 2020, pages 369–382. IEEE, 2020.

[15] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: efficient
constant bandwidth oblivious RAM from (leveled) TFHE. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, edi-
tors, Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15,
2019, pages 345–360. ACM, 2019.

[16] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for
recommender systems. In Alexandros Karatzoglou, Balázs Hidasi,
Domonkos Tikk, Oren Sar Shalom, Haggai Roitman, Bracha Shapira,
and Lior Rokach, editors, Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, DLRS@RecSys 2016, Boston, MA,
USA, September 15, 2016, pages 7–10. ACM, 2016.

[17] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In Shilad Sen, Werner Geyer, Jill
Freyne, and Pablo Castells, editors, Proceedings of the 10th ACM Con-
ference on Recommender Systems, Boston, MA, USA, September 15-19,
2016, pages 191–198. ACM, 2016.

[18] Criteo AI Labs. Criteo Research Datasets. https://ailab.criteo.com/
ressources/, 2024.

[19] Ian Cutress. A few notes on intel’s knights landing and mcdram
modes from sc15. https://www.anandtech.com/show/9794/a-few-
notes-on-intels-knights-landing-and-mcdram-modes-from-sc15,
2015.

[20] John R. Douceur. The sybil attack. In Peter Druschel, Frans Kaashoek,
and Antony Rowstron, editors, Peer-to-Peer Systems, pages 251–260,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[21] Erika Duriakova, Elias Z Tragos, Barry Smyth, Neil Hurley, Fran-
cisco J Peña, Panagiotis Symeonidis, James Geraci, and Aonghus
Lawlor. Pdmfrec: a decentralised matrix factorisation with tunable
user-centric privacy. In Proceedings of the 13th ACM Conference on
Recommender Systems, pages 457–461, 2019.

[22] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical Computer
Science, 9(3–4):211–407, 2014.

[23] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyan-
skiy, Sergey Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin
Katti. Bandana: Using non-volatile memory for storing deep learning
models. In Ameet Talwalkar, Virginia Smith, and Matei Zaharia,
editors, Proceedings of Machine Learning and Systems 2019, MLSys
2019, Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org, 2019.

[24] Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom Diethe.
Privacy- and utility-preserving textual analysis via calibrated mul-
tivariate perturbations. In James Caverlee, Xia (Ben) Hu, Mounia
Lalmas, and Wei Wang, editors,WSDM ’20: The Thirteenth ACM In-
ternational Conference on Web Search and Data Mining, Houston, TX,
USA, February 3-7, 2020, pages 178–186. ACM, 2020.

[25] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A se-
cure processor architecture for encrypted computation on untrusted
programs. In Proceedings of the seventh ACM workshop on Scalable
trusted computing, pages 3–8, 2012.

[26] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk,
Emil Stefanov, Dimitrios N. Serpanos, and Srinivas Devadas. A low-
latency, low-area hardware oblivious RAM controller. In 23rd IEEE
Annual International Symposium on Field-Programmable Custom Com-
puting Machines, FCCM 2015, Vancouver, BC, Canada, May 2-6, 2015,
pages 215–222. IEEE Computer Society, 2015.

[27] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating
sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866,
2018.

[28] GDPR.EU. A guide to GDPR data privacy requirements. https://gdpr.
eu/data-privacy/, 2024.

[29] Arpita Ghosh and Robert Kleinberg. Inferential privacy guarantees
for differentially private mechanisms. arXiv preprint arXiv:1603.01508,
2016.

[30] Oded Goldreich. Towards a theory of software protection and sim-
ulation by oblivious rams. In Alfred V. Aho, editor, Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 182–194. ACM, 1987.

[31] Oded Goldreich and Rafail Ostrovsky. Software protection and simu-
lation on oblivious rams. J. ACM, 43(3):431–473, 1996.

[32] Shay Gueron. A memory encryption engine suitable for general
purpose processors. IACR Cryptol. ePrint Arch., page 204, 2016.

[33] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang
He. Deepfm: A factorization-machine based neural network for CTR
prediction. In Carles Sierra, editor, Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 1725–1731. ijcai.org,
2017.

[34] Ian Hamilton. Oculus quest keyboard option sends ’aggregate mod-
eling data’ to facebook. https://www.uploadvr.com/facebook-quest-
keyboard-data/, 2021.

[35] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kid-
don, and Daniel Ramage. Federated learning for mobile keyboard
prediction. arXiv preprint arXiv:1811.03604, 2018.

[36] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19,
2016.

[37] Hanieh Hashemi, Wenjie Xiong, Liu Ke, Kiwan Maeng, Murali An-
navaram, G Edward Suh, and Hsien-Hsin S Lee. Private data leakage
via exploiting access patterns of sparse features in deep learning-
based recommendation systems. In Workshop on Trustworthy and
Socially Responsible Machine Learning, NeurIPS 2022, 2022.

[38] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. Neural collaborative filtering. In Rick Barrett, Rick
Cummings, Eugene Agichtein, and Evgeniy Gabrilovich, editors, Pro-
ceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 173–182. ACM,
2017.

[39] István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized
recommendation based on matrix factorization: A comparison of
gossip and federated learning. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 317–332.
Springer, 2019.

https://ailab.criteo.com/ressources/
https://ailab.criteo.com/ressources/
https://www.anandtech.com/show/9794/a-few-notes-on-intels-knights-landing-and-mcdram-modes-from-sc15
https://www.anandtech.com/show/9794/a-few-notes-on-intels-knights-landing-and-mcdram-modes-from-sc15
https://gdpr.eu/data-privacy/
https://gdpr.eu/data-privacy/
https://www.uploadvr.com/facebook-quest-keyboard-data/
https://www.uploadvr.com/facebook-quest-keyboard-data/

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

[40] Ing-Jer Huang, Chun-Hung Lai, Yun-Chung Yang, Hsu-Kang Dow,
and Hung-Lun Chen. A reconfigurable cache for efficient use of tag
ram as scratch-pad memory. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(4):663–670, 2018.

[41] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat,
Ashkan Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov,
Harish Srinivas, Kaikai Wang, Anthony Shoumikhin, Jesik Min, and
Mani Malek. PAPAYA: practical, private, and scalable federated learn-
ing. In Diana Marculescu, Yuejie Chi, and Carole-Jean Wu, editors,
Proceedings of Machine Learning and Systems 2022, MLSys 2022, Santa
Clara, CA, USA, August 29 - September 1, 2022. mlsys.org, 2022.

[42] Jacob Imola, Shiva Kasiviswanathan, Stephen White, Abhinav Ag-
garwal, and Nathanael Teissier. Balancing utility and scalability in
metric differential privacy. In Uncertainty in Artificial Intelligence,
pages 885–894. PMLR, 2022.

[43] Intel. Intel® software guard extensions. https://www.intel.
com/content/www/us/en/developer/tools/software-guard-
extensions/overview.html, 2023.

[44] Intel. Intel® trust domain extensions (intel® tdx). https:
//www.intel.com/content/www/us/en/developer/tools/trust-
domain-extensions/documentation.html, 2024.

[45] Amir Jalalirad, Marco Scavuzzo, Catalin Capota, and Michael Sprague.
A simple and efficient federated recommender system. In Proceedings
of the 6th IEEE/ACM international conference on big data computing,
applications and technologies, pages 53–58, 2019.

[46] Yupeng Jiang, Yong Li, Yipeng Zhou, and Xi Zheng. Mitigating sybil
attacks on differential privacy based federated learning. arXiv preprint
arXiv:2010.10572, 2020.

[47] Yupeng Jiang, Yong Li, Yipeng Zhou, and Xi Zheng. Sybil attacks
and defense on differential privacy based federated learning. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pages 355–362. IEEE,
2021.

[48] Peter Kairouz, SewoongOh, and Pramod Viswanath. The composition
theorem for differential privacy. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLR Workshop and Conference Proceedings,
pages 1376–1385. JMLR.org, 2015.

[49] Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential
recommendation. In IEEE International Conference on Data Mining,
ICDM 2018, Singapore, November 17-20, 2018, pages 197–206. IEEE
Computer Society, 2018.

[50] Sanjay Kariyappa, Chuan Guo, Kiwan Maeng, Wenjie Xiong, G. Ed-
ward Suh, Moinuddin K. Qureshi, and Hsien-Hsin S. Lee. Cocktail
party attack: Breaking aggregation-based privacy in federated learn-
ing using independent component analysis. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, International Conference on Machine Learn-
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 15884–15899. PMLR,
2023.

[51] Eugene Kharitonov. Federated online learning to rank with evolution
strategies. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pages 249–257, 2019.

[52] Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework
for mathematical privacy definitions. ACM Trans. Database Syst.,
39(1), January 2014.

[53] Seah Kim, Jerry Zhao, Krste Asanovic, Borivoje Nikolic, and
Yakun Sophia Shao. Aurora: Virtualized accelerator orchestration for
multi-tenant workloads. In Proceedings of the 56th Annual IEEE/ACM
International Symposium onMicroarchitecture, MICRO ’23, page 62–76,
New York, NY, USA, 2023. Association for Computing Machinery.

[54] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[55] Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Shuang Song,
Abhradeep Thakurta, and Li Zhang. Private learning with public
features. In International Conference on Artificial Intelligence and
Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, volume
238 of Proceedings of Machine Learning Research, pages 4150–4158.
PMLR, 2024.

[56] Jinxi Kuang, Minghua Shen, Yutong Lu, and Nong Xiao. Exploiting
data locality in memory for oram to reduce memory access overheads.
In Proceedings of the 59th ACM/IEEE Design Automation Conference,
DAC ’22, page 703–708, New York, NY, USA, 2022. Association for
Computing Machinery.

[57] Fan Lai, Yinwei Dai, Sanjay Sri Vallabh Singapuram, Jiachen Liu,
Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury.
Fedscale: Benchmarking model and system performance of federated
learning at scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pages 11814–11827. PMLR, 2022.

[58] Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan Maeng, Udit
Gupta, Minsoo Rhu, Hsien-Hsin S. Lee, Vijay Janapa Reddi, Gu-Yeon
Wei, David Brooks, and G. Edward Suh. Gpu-based private informa-
tion retrieval for on-device machine learning inference. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2024. ACM,
2024.

[59] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and
Dawn Song. Keystone: an open framework for architecting trusted
execution environments. In Angelos Bilas, Kostas Magoutis, Evange-
los P. Markatos, Dejan Kostic, and Margo I. Seltzer, editors, EuroSys
’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30,
2020, pages 38:1–38:16. ACM, 2020.

[60] Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey S.
Dwoskin, and Zhenghong Wang. Architecture for protecting criti-
cal secrets in microprocessors. In 32st International Symposium on
Computer Architecture (ISCA 2005), 4-8 June 2005, Madison, Wisconsin,
USA, pages 2–13. IEEE Computer Society, 2005.

[61] Seunghak Lee, Ki-Dong Kang, Hwanjun Lee, Hyungwon Park,
Younghoon Son, Nam Sung Kim, and Daehoon Kim. Greendimm:
Os-assisted dram power management for dram with a sub-array gran-
ularity power-down state. InMICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO ’21, page 131–142,
New York, NY, USA, 2021. Association for Computing Machinery.

[62] Kif Leswing. Facebook says apple ios privacy change
will result in $10 billion revenue hit this year. https:
//www.cnbc.com/2022/02/02/facebook-says-apple-ios-privacy-
change-will-cost-10-billion-this-year.html, 2022.

[63] Dongsheng Li, Chao Chen, Qin Lv, Li Shang, Yingying Zhao, Tun
Lu, and Ning Gu. An algorithm for efficient privacy-preserving item-
based collaborative filtering. Future Generation Computer Systems,
55:311–320, 2016.

[64] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth,
Radu Teodorescu, and Yinqian Zhang. A systematic look at ciphertext
side channels on AMD SEV-SNP. In 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages
337–351. IEEE, 2022.

[65] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang
Cheng. CIPHERLEAKS: breaking constant-time cryptography on
AMD SEV via the ciphertext side channel. In Michael D. Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.cnbc.com/2022/02/02/facebook-says-apple-ios-privacy-change-will-cost-10-billion-this-year.html
https://www.cnbc.com/2022/02/02/facebook-says-apple-ios-privacy-change-will-cost-10-billion-this-year.html
https://www.cnbc.com/2022/02/02/facebook-says-apple-ios-privacy-change-will-cost-10-billion-this-year.html

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Security 2021, August 11-13, 2021, pages 717–732. USENIX Association,
2021.

[66] Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. Difacto:
Distributed factorization machines. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining, pages 377–
386, 2016.

[67] Xiang Li, Yunqian Luo, and Mingyu Gao. Bulkor: Enabling bulk
loading for path oram. In 2024 IEEE Symposium on Security and
Privacy (SP), pages 4258–4276, 2024.

[68] Juntaek Lim, Youngeun Kwon, Ranggi Hwang, Kiwan Maeng, G. Ed-
ward Suh, andMinsoo Rhu. Lazydp: Co-designing algorithm-software
for scalable training of differentially private recommendation models.
In Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2024. ACM, 2024.

[69] Liang Liu, Rujia Wang, Youtao Zhang, and Jun Yang. H-ORAM: A
cacheable ORAM interface for efficient I/O accesses. In Proceedings
of the 56th Annual Design Automation Conference 2019, DAC 2019, Las
Vegas, NV, USA, June 02-06, 2019, page 33. ACM, 2019.

[70] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh
Tsai, Carole-Jean Wu, and Mark Hempstead. Understanding capacity-
driven scale-out neural recommendation inference. In IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software,
ISPASS 2021, Stony Brook, NY, USA, March 28-30, 2021, pages 162–171.
IEEE, 2021.

[71] Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang, Celine Irvene,
Esha Choukse, Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhami-
aka, and Daniel S. Berger. Myths andmisconceptions around reducing
carbon embedded in cloud platforms. In George Porter, Tom Ander-
son, Andrew A. Chien, Tamar Eilam, Colleen Josephson, and Jonggyu
Park, editors, Proceedings of the 2nd Workshop on Sustainable Com-
puter Systems, HotCarbon 2023, Boston, MA, USA, 9 July 2023, pages
7:1–7:7. ACM, 2023.

[72] Kiwan Maeng, Chuan Guo, Sanjay Kariyappa, and G Edward Suh.
Bounding the invertibility of privacy-preserving instance encoding
using fisher information. In Advances in Neural Information Process-
ing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, 2023.

[73] Kiwan Maeng, Haiyu Lu, Luca Melis, John Nguyen, Mike Rabbat, and
Carole-Jean Wu. Rf2. https://github.com/facebookresearch/RF2.

[74] Kiwan Maeng, Haiyu Lu, Luca Melis, John Nguyen, Mike Rabbat,
and Carole-Jean Wu. Towards fair federated recommendation learn-
ing: Characterizing the inter-dependence of system and data het-
erogeneity. In Jennifer Golbeck, F. Maxwell Harper, Vanessa Mur-
dock, Michael D. Ekstrand, Bracha Shapira, Justin Basilico, Keld T.
Lundgaard, and Even Oldridge, editors, RecSys ’22: Sixteenth ACM
Conference on Recommender Systems, Seattle, WA, USA, September 18
- 23, 2022, pages 156–167. ACM, 2022.

[75] Peter Mattson, Christine Cheng, Gregory F. Diamos, Cody Coleman,
Paulius Micikevicius, David A. Patterson, Hanlin Tang, Gu-Yeon Wei,
Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta,
Udit Gupta, Kim M. Hazelwood, Andy Hock, Xinyuan Huang, Daniel
Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan,
Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa
Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu, Cliff
Young, and Matei Zaharia. Mlperf training benchmark. In Inderjit S.
Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze, editors, Pro-
ceedings of Machine Learning and Systems 2020, MLSys 2020, Austin,
TX, USA, March 2-4, 2020. mlsys.org, 2020.

[76] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley,
Hugues Bouchard, Alois Gruson, and Rishabh Mehrotra. Explore,
exploit, and explain: personalizing explainable recommendations
with bandits. In Sole Pera, Michael D. Ekstrand, Xavier Amatriain,
and John O’Donovan, editors, Proceedings of the 12th ACM Conference

on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October
2-7, 2018, pages 31–39. ACM, 2018.

[77] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Aarti Singh and Xiaojin (Jerry)
Zhu, editors, Proceedings of the 20th International Conference on Arti-
ficial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning
Research, pages 1273–1282. PMLR, 2017.

[78] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
Learning differentially private recurrent language models. In 6th In-
ternational Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

[79] Matthew Mead. History of costs of ram vs. hard drives vs. ssds.
https://azrael.digipen.edu/ mmead/www/Courses/CS180/ram-hd-ssd-
prices.html, 2022.

[80] Xuying Meng, Suhang Wang, Kai Shu, Jundong Li, Bo Chen, Huan
Liu, and Yujun Zhang. Personalized privacy-preserving social rec-
ommendation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[81] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa,
and Raluca Ada Popa. Oblix: An efficient oblivious search index. In
2018 IEEE Symposium on Security and Privacy (SP), pages 279–296,
2018.

[82] Sparsh Mittal. A survey of techniques for cache locking. ACM Trans.
Des. Autom. Electron. Syst., 21(3), May 2016.

[83] Jianqiao Mo, Jayanth Gopinath, and Brandon Reagen. Haac: A
hardware-software co-design to accelerate garbled circuits. In Pro-
ceedings of the 50th Annual International Symposium on Computer
Architecture, ISCA ’23, New York, NY, USA, 2023. Association for
Computing Machinery.

[84] Milad Nasr, Shuang Song, Abhradeep Thakurta, Nicolas Papernot,
and Nicholas Carlini. Adversary instantiation: Lower bounds for
differentially private machine learning. In 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021,
pages 866–882. IEEE, 2021.

[85] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and
Misha Smelyanskiy. Deep learning recommendation model for per-
sonalization and recommendation systems. CoRR, abs/1906.00091,
2019.

[86] Lin Ning, Steve Chien, Shuang Song, Mei Chen, Yunqi Xue, and De-
vora Berlowitz. EANA: reducing privacy risk on large-scale recom-
mendation models. In Jennifer Golbeck, F. Maxwell Harper, Vanessa
Murdock, Michael D. Ekstrand, Bracha Shapira, Justin Basilico, Keld T.
Lundgaard, and Even Oldridge, editors, RecSys ’22: Sixteenth ACM
Conference on Recommender Systems, Seattle, WA, USA, September 18
- 23, 2022, pages 399–407. ACM, 2022.

[87] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia,
Chengfei Lv, Zhihua Wu, and Guihai Chen. Billion-scale federated
learning on mobile clients: A submodel design with tunable privacy.
In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pages 1–14, 2020.

[88] Pavan Sabnagapati. Ad Display/Click Data on Taobao.com.
https://www.kaggle.com/datasets/pavansanagapati/ad-
displayclick-data-on-taobaocom, 2020.

[89] Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu,
Carson Denison, H. Brendan McMahan, Sergei Vassilvitskii, Steve
Chien, and Abhradeep Guha Thakurta. How to dp-fy ML: A practical

https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Jinyu Liu, Wenjie Xiong, G. Edward Suh, and Kiwan Maeng

guide to machine learning with differential privacy. J. Artif. Intell.
Res., 77:1113–1201, 2023.

[90] Rachit Rajat, Yongqin Wang, and Murali Annavaram. LAORAM: A
look ahead ORAM architecture for training large embedding tables.
In Yan Solihin and Mark A. Heinrich, editors, Proceedings of the 50th
Annual International Symposium on Computer Architecture, ISCA 2023,
Orlando, FL, USA, June 17-21, 2023, pages 76:1–76:15. ACM, 2023.

[91] Rachit Rajat, Yongqin Wang, and Murali Annavaram. Pageoram:
An efficient dram page aware oram strategy. In Proceedings of the
55th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’22, page 91–107. IEEE Press, 2023.

[92] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Ke-
shavan, Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q.
Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and Maheswaran Sathi-
amoorthy. Recommender systems with generative retrieval. CoRR,
abs/2305.05065, 2023.

[93] Mehrnoosh Raoufi, Jun Yang, Xulong Tang, and Youtao Zhang. Ab-
oram: Constructing adjustable buckets for space reduction in ring
oram. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 361–373, 2023.

[94] Mehrnoosh Raoufi, Youtao Zhang, and Jun Yang. Ir-oram: Path access
type based memory intensity reduction for path-oram. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 360–372, 2022.

[95] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
Keith Rush, Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan.
Adaptive federated optimization. arXiv preprint arXiv:2003.00295,
2020.

[96] Ling Ren, ChristopherW. Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten van Dijk, and Srinivas Devadas. Ring ORAM: closing
the gap between small and large client storage oblivious RAM. IACR
Cryptol. ePrint Arch., page 997, 2014.

[97] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk,
and Srinivas Devadas. Design space exploration and optimization of
path oblivious ram in secure processors. SIGARCH Comput. Archit.
News, 41(3):571–582, jun 2013.

[98] Holger Roth, Michael Zephyr, and Ahmed Harouni. Federated learn-
ing with homomorphic encryption. https://developer.nvidia.com/
blog/federated-learning-with-homomorphic-encryption/, 2021.

[99] Samsung. Samsung nvme™ ssd 980 pro data sheet.
https://download.semiconductor.samsung.com/resources/data-
sheet/Samsung-NVMe-SSD-980-PRO-Data-
Sheet_Rev.2.1_230509_10129505081019.pdf, 2021.

[100] Ahmed E Samy and Šarūnas Girdzijauskas. Mitigating sybil attacks
in federated learning. In International Conference on Information
Security Practice and Experience, pages 36–51. Springer, 2023.

[101] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace :
Oblivious memory primitives from intel SGX. In 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society, 2018.

[102] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu,
John Rush, and Sushant Prakash. Federated reconstruction: Partially
local federated learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 11220–11232, 2021.

[103] Solidigm. D7-p5620. https://www.solidigm.com/products/data-
center/d7/p5620.html.

[104] Mohammadreza Soltaniyeh, Veronica Lagrange Moutinho dos Reis,
Matthew Bryson, Xuebin Yao, Richard P. Martin, and Santosh Na-
garakatte. Near-storage processing for solid state drive based recom-
mendation inference with smartssds®. In Dan Feng, Steffen Becker,
Nikolas Herbst, and Philipp Leitner, editors, ICPE ’22: ACM/SPEC

International Conference on Performance Engineering, Bejing, China,
April 9 - 13, 2022, pages 177–186. ACM, 2022.

[105] Harald Steck, Linas Baltrunas, Ehtsham Elahi, Dawen Liang, Yves Rai-
mond, and Justin Basilico. Deep learning for recommender systems:
A netflix case study. AI Mag., 42(3):7–18, 2021.

[106] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivi-
ous cloud storage. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 253–267. IEEE
Computer Society, 2013.

[107] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards prac-
tical oblivious RAM. In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012. The Internet Society, 2012.

[108] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an ex-
tremely simple oblivious RAM protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 299–310. ACM, 2013.

[109] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk,
and Srinivas Devadas. AEGIS: architecture for tamper-evident and
tamper-resistant processing. In Utpal Banerjee, Kyle A. Gallivan,
and Antonio González, editors, Proceedings of the 17th Annual Inter-
national Conference on Supercomputing, ICS 2003, San Francisco, CA,
USA, June 23-26, 2003, pages 160–171. ACM, 2003.

[110] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and
Peng Jiang. Bert4rec: Sequential recommendation with bidirectional
encoder representations from transformer. In Wenwu Zhu, Dacheng
Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel,
Qi He, and Jeffrey Xu Yu, editors, Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM
2019, Beijing, China, November 3-7, 2019, pages 1441–1450. ACM, 2019.

[111] Xuan Sun, HuWan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun Ja-
son Xue. RM-SSD: in-storage computing for large-scale recommenda-
tion inference. In IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2022, Seoul, South Korea, April 2-6, 2022,
pages 1056–1070. IEEE, 2022.

[112] The White House. Executive Order on Preventing Access
to Americans’ Bulk Sensitive Personal Data and United
States Government-Related Data by Countries of Concern.
https://www.whitehouse.gov/briefing-room/presidential-
actions/2024/02/28/executive-order-on-preventing-access-to-
americans-bulk-sensitive-personal-data-and-united-states-
government-related-data-by-countries-of-concern/, 2024.

[113] Shruti Tople, Yaoqi Jia, and Prateek Saxena. PRO-ORAM: practi-
cal read-only oblivious RAM. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang
District, Beijing, China, September 23-25, 2019, pages 197–211. USENIX
Association, 2019.

[114] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-
preserving federated learning. In Lorenzo Cavallaro, Johannes Kinder,
Sadia Afroz, Battista Biggio, Nicholas Carlini, Yuval Elovici, and Asaf
Shabtai, editors, Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, AISec@CCS 2019, London, UK, November 15,
2019, pages 1–11. ACM, 2019.

[115] Muhammad Umar, Akhilesh Parag Marathe, Monami Dutta Gupta,
Shubham Jogprakash Ghosh, G. Edward Suh, and Wenjie Xiong. Effi-
cient memory side-channel protection for embedding generation
in machine learning. In 2025 International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2025.

[116] Hu Wan, Xuan Sun, Yufei Cui, Chia-Lin Yang, Tei-Wei Kuo, and
Chun Jason Xue. Flashembedding: storing embedding tables in ssd
for large-scale recommender systems. In Proceedings of the 12th ACM

https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption/
https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption/
https://www.whitehouse.gov/briefing-room/presidential-actions/2024/02/28/executive-order-on-preventing-access-to-americans-bulk-sensitive-personal-data-and-united-states-government-related-data-by-countries-of-concern/
https://www.whitehouse.gov/briefing-room/presidential-actions/2024/02/28/executive-order-on-preventing-access-to-americans-bulk-sensitive-personal-data-and-united-states-government-related-data-by-countries-of-concern/
https://www.whitehouse.gov/briefing-room/presidential-actions/2024/02/28/executive-order-on-preventing-access-to-americans-bulk-sensitive-personal-data-and-united-states-government-related-data-by-countries-of-concern/
https://www.whitehouse.gov/briefing-room/presidential-actions/2024/02/28/executive-order-on-preventing-access-to-americans-bulk-sensitive-personal-data-and-united-states-government-related-data-by-countries-of-concern/

FEDORA: Practical FL for Recommendation Models Using ORAM ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

SIGOPS Asia-Pacific Workshop on Systems, APSys ’21, page 9–16, New
York, NY, USA, 2021. Association for Computing Machinery.

[117] Ewen Wang, Boyi Chen, Mosharaf Chowdhury, Ajay Kannan, and
Franco Liang. Flint: A platform for federated learning integration.
In Proceedings of Machine Learning and Systems 2023, MLSys 2023,
Miami Beach, FL, USA, June 4 - June 8, 2023. mlsys.org, 2023.

[118] Rujia Wang, Youtao Zhang, and Jun Yang. Cooperative path-oram for
effective memory bandwidth sharing in server settings. In 2017 IEEE
International Symposium on High Performance Computer Architecture,
HPCA 2017, Austin, TX, USA, February 4-8, 2017, pages 325–336. IEEE
Computer Society, 2017.

[119] Rujia Wang, Youtao Zhang, and Jun Yang. D-ORAM: path-oram dele-
gation for low execution interference on cloud servers with untrusted
memory. In IEEE International Symposium on High Performance Com-
puter Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018,
pages 416–427. IEEE Computer Society, 2018.

[120] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross
network for ad click predictions. In Proceedings of the ADKDD’17,
Halifax, NS, Canada, August 13 - 17, 2017, pages 12:1–12:7. ACM, 2017.

[121] Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain,
Dong Lin, Lichan Hong, and Ed H. Chi. DCN V2: improved deep &
cross network and practical lessons for web-scale learning to rank
systems. In Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang,
and Leila Zia, editors,WWW ’21: The Web Conference 2021, Virtual
Event / Ljubljana, Slovenia, April 19-23, 2021, pages 1785–1797. ACM /
IW3C2, 2021.

[122] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-
Jean Wu, David Brooks, and Gu-Yeon Wei. Recssd: near data pro-
cessing for solid state drive based recommendation inference. In Tim
Sherwood, Emery D. Berger, and Christos Kozyrakis, editors, ASPLOS
’21: 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pages 717–729. ACM, 2021.

[123] X Xie, J Lian, Z Liu, XWang, FWu, HWang, and Z Chen. Personalized
recommendation systems: Five hot research topics you must know.
Microsoft Research Lab-Asia, 2018.

[124] Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-
Choo, Peter Kairouz, H Brendan McMahan, Jesse Rosenstock, and
Yuanbo Zhang. Federated learning of gboard language models with
differential privacy. arXiv preprint arXiv:2305.18465, 2023.

[125] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui
Bian, Yunxin Liu, and Xuanzhe Liu. Characterizing impacts of hetero-
geneity in federated learning upon large-scale smartphone data. In
Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia,
editors,WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021, pages 935–946. ACM / IW3C2, 2021.

[126] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei
Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. Applied
federated learning: Improving google keyboard query suggestions.
arXiv preprint arXiv:1812.02903, 2018.

[127] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz
Heldt, Aditee Kumthekar, Zhe Zhao, Li Wei, and Ed H. Chi. Sampling-
bias-corrected neural modeling for large corpus item recommenda-
tions. In Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos
Tikk, editors, Proceedings of the 13th ACMConference on Recommender
Systems, RecSys 2019, Copenhagen, Denmark, September 16-20, 2019,
pages 269–277. ACM, 2019.

[128] Xiangyao Yu, Syed Kamran Haider, Ling Ren, ChristopherW. Fletcher,
Albert Kwon, Marten van Dijk, and Srinivas Devadas. Proram: dy-
namic prefetcher for oblivious RAM. In Deborah T. Marr and David H.
Albonesi, editors, Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture, Portland, OR, USA, June 13-17, 2015,
pages 616–628. ACM, 2015.

[129] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack
Doerner, David Evans, and Jonathan Katz. Revisiting square-root
ORAM: efficient random access in multi-party computation. In IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 218–234. IEEE Computer Society, 2016.

[130] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao,
Leon Gao, Zhaojie Gong, Fangda Gu, Jiayuan He, Yinghai Lu, and
Yu Shi. Actions speak louder than words: Trillion-parameter se-
quential transducers for generative recommendations. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

[131] Xian Zhang, Guangyu Sun, Peichen Xie, Chao Zhang, Yannan Liu,
Lingxiao Wei, Qiang Xu, and Chun Jason Xue. Shadow block: Ac-
celerating oram accesses with data duplication. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 961–973, 2018.

[132] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang,
Tao Wang, Yiran Chen, and Jia Di. Fork path: improving efficiency of
ORAM by removing redundant memory accesses. In Milos Prvulovic,
editor, Proceedings of the 48th International Symposium on Microar-
chitecture, MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, pages
102–114. ACM, 2015.

[133] Yuanbo Zhang, Daniel Ramage, Zheng Xu, Yanxiang Zhang, Shumin
Zhai, and Peter Kairouz. Private federated learning in gboard. arXiv
preprint arXiv:2306.14793, 2023.

[134] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Ming-
ming Sun, and Ping Li. Distributed hierarchical GPU parameter server
for massive scale deep learning ads systems. In Inderjit S. Dhillon,
Dimitris S. Papailiopoulos, and Vivienne Sze, editors, Proceedings of
Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020. mlsys.org, 2020.

[135] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou,
Xiaoqiang Zhu, and Kun Gai. Deep interest evolution network for
click-through rate prediction. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
5941–5948. AAAI Press, 2019.

[136] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu,
Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. Deep interest
network for click-through rate prediction. In Yike Guo and Faisal
Farooq, editors, Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018, pages 1059–1068. ACM, 2018.

[137] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 14747–14756, 2019.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Deep Learning Recommendation Models
	2.2 Federated Learning (FL)
	2.3 Oblivious RAM (ORAM)

	3 Feature-level Differential Privacy (FDP)
	3.1 Definition of -FDP
	3.2 Limitations of ORAM in Achieving -FDP
	3.3 Designing a Controllable -FDP ORAM

	4 FEDORA System Design
	4.1 Assumptions and Threat Model of This Work
	4.2 FEDORA Overview
	4.3 Buffer ORAM for Different Operation Modes
	4.4 Placing the Main ORAM in an SSD

	5 Implementation Details
	5.1 TEE-based Implementation Overview
	5.2 Encrypting Off-chip Data Structures

	6 Evaluation
	6.1 Evaluation setup
	6.2 FEDORA Increases the SSD Lifetime
	6.3 FEDORA Improves the End-to-end Latency
	6.4 Private Features Improve the Model Quality
	6.5 FEDORA Reduces Power, Energy, and Cost
	6.6 Additional Ablation Studies

	7 Additional Related Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	References

